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Entropy-based measures (e.g., mutual information, also known as Kullback-Leiber divergence), which
quantify the similarity between two signals, are widely used as similarity measures for image registra-
tion. Although they are proven superior to many classical statistical measures, entropy-based measures,
such as mutual information, may fail to yield the optimum registration if the multimodal image pair has
insufficient scene overlap region. To overcome this challenge, we proposed using the symmetric form of
Kullback-Leiber divergence, namely Jeffrey’s divergence, as the similarity measure in practical multi-
modal image registration tasks. Mathematical analysis was performed to investigate the causes account-
ing for the limitation of mutual information when dealing with insufficient scene overlap image pairs.
Experimental registrations of SPOT image, Landsat TM image, ALOS PalSAR image, and DEM data were
carried out to compare the performance of Jeffrey’s divergence and mutual information. Results indicate
that Jeffrey’s divergence is capable of providing larger feasible search space, which is favorable for explor-
ing optimum transformation parameters in a larger range. This superiority of Jeffrey’s divergence was fur-
ther confirmed by a series of paradigms. Thus, the proposed model is more applicable for registering
image pairs that are greatly misaligned or have an insufficient scene overlap region.
� 2016 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier

B.V. All rights reserved.
1. Introduction

Image registration is an important problem and a fundamental
task in remotely sensed image analysis. Remotely sensed images
collected by disparate sensors have different radiometric proper-
ties such as physical magnitudes, spectral bands, and image coher-
ency (microwave and optical images) (Inglada and Giros, 2004).
These properties provide various pieces of complementary infor-
mation on terrestrial objects that we are interested in. By integrat-
ing multiple images, information obtained from separated images
can be combined into one for further processing and analysis such
as image fusion (Jiang et al., 2012; Luo et al., 2013; Zhang et al.,
2012), multisource data assimilation (Bach and Mauser, 2003;
Launay and Guerif, 2005), and land cover change detection
(Almeida-Filho et al., 2005; Liu et al., 2010, 2014; Servello et al.,
2010). All these analyses require accurate multimodal image
registration in advance.
Image registration usually refers to the process of bringing sev-
eral images into spatial alignment that involve the same terrestrial
target but are collected under different viewing conditions and/or
by using separate imaging devices (Kern and Pattichis, 2007). In
general, an image registration model is composed of three parts:
a spatial transformation, a similarity measure, and an optimization
procedure (Ardizzone et al., 2009). If a registration model is applied
to an image pair, we usually designate one image as the reference
and apply a spatial transformation to the other image (floating
image) to bring them into alignment. Throughout the registration,
a similarity measure (e.g., mutual information (Collignon et al.,
1995), normalized cross correlation (Lemieux et al., 1994), etc.) is
defined to verify the quality of alignment between the image pair.
Then, an optimization algorithm (gradient descent algorithm
(Klein et al., 2009), genetic algorithm (Silva et al., 2005), etc.) is car-
ried out to search for the extreme of the similarity measure in the
transformation space, which indicates the perfect alignment of the
image pairs.

During the registration process, choosing the appropriate simi-
larity measure is crucial because it significantly affects the accu-
racy and robustness of the registration result. In an ideal image
registration model, the similarity measure is supposed to obtain
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an extreme value if and only if the two images are perfectly aligned.
Currently, numerous studies on entropy-based similarity measures
have been conducted in the field of automatic image registration
(Chiang et al., 2006; He et al., 2003; Martin and Durrani, 2007;
Pluim et al., 2004; Wachowiak et al., 2003a, 2003b). In fact, most
of these entropy-based measures are derived from f-divergences
(Ali and Silvey, 1966; Pardo and Vajda, 2003; Pluim et al., 2004;
Topsoe, 2000). Statistically, f-divergence family members arise nat-
urally as distance notions (or error exponents) between two distri-
butions. Mutual information (Collignon et al., 1995; Viola and
Wells, 1997), referred to as KL-divergence in probability theory,
is one of them. It is proven that mutual information is superior
to many classical statistical measures for its minimal assumptions
on the correspondence between image intensities as well as its
fully automated implementation (Seppa, 2008). As long as a certain
co-dependence exists between an image pair, mutual information
can obtain a peak value when the two images are registered. Since
then, mutual information has drawn tremendous interest and has
been adopted for numerous applications (Pluim et al., 2000;
Studholme et al., 1995, 1997). In addition, some modified versions
of mutual information, such as normalized mutual information
(Studholme et al., 1999) and weight mutual information (Li et al.,
2008), have been developed to improve the performance of multi-
modal remotely sensed image registration and achieve outstanding
results (Chen and Varshnev, 2004; Chen et al., 2003a, 2003b; Cole-
Rhodes et al., 2003; Inglada and Giros, 2004; Inglada et al., 2007;
Johnson et al., 2001; Xie et al., 2003).

These abovementioned models mainly focus on pursuing sub-
pixel registration accuracy by designing better similarity measures
(He et al., 2003; Liang et al., 2014; Karantzalos et al., 2014; Martin
and Durrani, 2007; Pluim et al., 2004) or applying advanced inter-
polation methods (e.g., PVE (Hasan et al., 2012; Maes et al., 1997),
GPVE (Chen and Varshney, 2003), and HPV (Lu et al., 2008)).
Though such models can register image pairs accurately, they are
only applicable to image pairs with sufficient scene overlap region
(the common terrestrial region that captured by the multiple
devices; see Section 3.3 for details). In practical multimodal regis-
tration tasks, the floating images and reference one are usually
captured by various sensors. The scene overlap region between
these images is usually insufficient. During the parameter search-
ing process, the overlap region1 between the image pairs keeps
changing when trying different transformation parameters, and
equals to the scene overlap region only if the two images are per-
fectly aligned. In order to find out the optimum transformation
parameter, the search space has to cover a large range to ensure
the optimum transformation parameter is within it. Inevitably, there
exist some transformation parameters in the search space that result
in even smaller overlap regions between the images than the scene
overlap regions. The smaller overlap region between the image pairs,
the more unstable the mutual information. In such cases, the maxi-
mum value of mutual information does not correspond to the opti-
mum registration, but rather a certain transformation parameter
that leads to small overlap between the images. Moreover, images
captured via different sensors are different in coherency, which
introduces random interference during the estimation of similarity
measures and consequently exacerbate the uncertainty of the simi-
larity measure. These challenges must be reckoned with when
applying an automatic registration model to solve practical multi-
modal registration tasks. Otherwise, human intervention in model
1 Note that ‘‘overlapping region of the image pairs” is different from ‘‘scene
overlapping region”. Specifically, ‘‘overlapping region of two images” refers to overlap
of the floating image and the reference one. It keeps changing during the parameters
searching process in registration. However, ‘‘scene overlapping region” is the common
terrestrial region that captured by the multiple devices. It corresponds to the
‘‘overlapping region of two images” only if these two images are perfectly aligned.
initialization and search space restriction are needed to ensure that
the optimization algorithm only searches around the optimal trans-
formation parameters

Our paper aims to solve the abovementioned challenges. We
analyzed the limitations of mutual information for remotely
sensed image registration, particularly in these cases where multi-
modal image pairs were involved with an insufficient scene over-
lap region. Mathematical analysis and experiments were then
carried out to investigate the underlying causes accounting for
these limitations. On this basis, the symmetric form of mutual
information, namely Jeffrey’s divergence, was adopted as the sim-
ilarity measure to overcome the drawbacks of mutual information
in multimodal image registration application. By providing larger
feasible search space, registration model based on Jeffrey’s diver-
gence is more capable of registering multimodal image pairs that
are greatly misaligned or with insufficient scene overlap. Mutual
information will be used as the basis upon which to test the perfor-
mance of the proposed registrations models since it is a well-
accepted similarity measure from which numerous entropy-
based similarity measures have been derived.
2. Image registration based on intensity

Existing image registration models consist of three categories
concerning different information they utilize: feature, intensity,
and transform domains (Lin et al., 2009). Feature-based models
are data-dependent in that different image data may contain
features in different aspects. Extracting the same features in
multimodal images and matching them together is usually diffi-
cult. Models based on transform domains are robust in translation
misalignment, but are undesirable for dealing with rotation and
scaling. Compared with registration models based on features
and transform domains, intensity-based registration models are
easy to carry out and are free of error propagation (Zitova and
Flusser, 2003), even though sometimes they are quite time-
consuming. They simply utilize the intensity information lying in
the whole image to build a statistical relation and describe the sim-
ilarity of the image pair, which makes it applicable to multimodal
image registration.
2.1. Mathematical description of intensity-based registration

To clarify the mathematical description of the image registra-
tion model, we have the following definitions according to previ-
ous researches: (1) we define the image histogram of the overlap
region covered by the aligned image pair as a random variable I,
and use IR and IF to denote the random variables of reference image
and floating image respectively; (2) the sample spaces for IR and IF
are theoretically defined as image pixels covered by the overlap
region of the aligned image pair (corresponding to the scene over-
lap region). However, the overlap region of the aligned image pair
is actually unknown in the image registration process (this is what
the registration model attempts to determine). Therefore, in this
paper, the sample space is defined as image pixels covered by
the overlap region of the reference image and the transformed
floating image. The extra space around the images with 0-value
is introduced to keep the sample populations proximately
consistent.

In general, a typical image registration methodology is equiva-
lent to a function optimization problem (Modersitzki, 2004). The
optimization seeks the maximum similarity of an image pair by
determining a mathematical mapping S : l ! s from the
spatial transformation parameter space l to the similarity measure
space s. So the registration model can be mathematically expressed
as
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T� ¼ arg max
l

fSl½IRðXÞ; IFðTl � XÞ�g ð1Þ

where IRðXÞ and IFðXÞ are intensity distributions that denote the ref-
erence image and the floating image respectively, which vary with
their spatial coordination X; Tl is a spatial transformation model
characterized by a parameter vector l, which will be applied to
the coordinate of every pixel in IFðXÞ to map the floating image into
the transformed image IFðTl � XÞ; Slð�Þ is the objective function
(similarity) that indicates the mapping from the transformation
parameter vector l to the similarity measure s; finally, T� is the
optimum transformation that generates the maximum similarity,
which (theoretically) aligns the floating image to the reference
image perfectly.

2.2. Image statistical model and registration implementation

According to the intensity-based registration model depicted in
Section 2.1, the image distribution IðXÞ must be estimated before
we can obtain the similarity measure. In previous studies, an image
histogram, which plots the pixel number of each intensity level,
was adopted to denote the statistical characteristics of remotely
sensed images (Richards and Jia, 1999). With regard to a specific
terrestrial region, histograms estimated from multimodal images
share some common characteristics (e.g., having several peaks
emerges at different gray values). These common characteristics
imply that a certain kind of co-dependence exist among these
images. In other words, intensity values populating at the same
geographical position can be linked with one another via a specific
spatial mapping.

However, an image histogram cannot be directly applied to
image registration because it does not contain any spatial relation-
ship between the image pair within the same coordinate system.
Moreover, image registration is only concerned with the similarity
of the scene overlap region, whereas an image histogram accounts
for the statistical characteristics of the whole image. Several works
(Gao et al., 2008; Inglada and Giros, 2004; Pluim et al., 2000;
Thévenaz and Unser, 2000) have adopted the joint histogram of
the image pair to embed spatial information into an intensity dis-
tribution. In a joint histogram, two one-dimensional histograms
are combined into one by merging the coordinates of both images.
Consequently, the joint histogram of an image pair is a bi-
dimensional histogram, where two axes represent the intensity
level of two images and its elements indicate the distribution of
every intensity pair that shares the same coordinate (Fig. 1).

Mathematically, the joint histogram of an image pair can be
presented as a two-dimensional matrix:

JH ¼ ½cij� i 6 M j 6 N ð2Þ
where M and N are the total intensity levels of two images respec-
tively. Each value cij located at coordinate ði; jÞ indicates that there
are cij corresponding intensity pairs across the entire overlap region
of two images, having intensity value i in the first image and inten-
sity value j in the second image. Several examples of joint his-
tograms are illustrated in Fig. 1. Fig. 1-d is a special case,
estimated from two images that are identical and perfectly aligned.
In this joint histogram, all intensity pairs are distributed along the
diagonal because each intensity value in one image is equal to the
corresponding value in the other image if these two images are per-
fectly aligned. There exists a one-to-one mapping that strictly maps
each pixel value in one image to the corresponding pixel value in
another image. Fig. 1-e illustrates the joint histogram of different
spectral bands that are imaged at the same time by one sensor
(SPOT Band4 and Band1). Fig. 1-f is the joint histogram of two
images that are captured by different sensors (SPOT Band4 and Pal-
SAR). If the multi-spectral image pair is aligned together, the joint
histogram shows a significant banded structure along the diagonal
(Fig. 1-e). Instead of a strict one-to-one mapping, a many-to-many
relationship exists between the intensities of two images. As to
multimodal image registration, there will be no direct relationship
between the intensities of the two images. Intensity pairs will no
longer aggregate on the diagonal, but will concentrate on certain
regions even if the image pair is perfectly aligned (Fig. 1-f).

Generally, intensity pairs tend to be more dispersive if a greater
shift occurs between the image pair. In an image, polygon-shaped
terrestrial objects take up the majority of the pixels. A greater shift
will reduce the overlap area of the same terrestrial patches, which
results in the diversification of the intensity pair and leads to a
more dispersive distribution in the joint histogram. Thus, by mea-
suring the distribution of intensity pairs in the joint histogram
(dispersion or aggregation), we can deduce the quantity of align-
ment and determine the optimum transformation parameter set
that leads to a perfect alignment of the floating and reference
images.

Excluding some extreme cases, most intensity-based multi-
modal image registration methods are based on the assumption
that perfect alignment corresponds to the most aggregated distri-
bution intensity pairs in the joint histogram. Hence, the similarity
measure, which essentially measures the distance between
distributions of intensity pairs, indirectly reflects the registration
result. Robust multimodal image registration requires an
appropriate similarity measure capable of withstanding external
interference and indicating the quality of alignment between
image pairs.

3. Mathematical analysis of mutual information’s limitation

According to Section 2, a similarity measure determines the
accuracy and robustness of registration models. Mutual
information, as a similarity measure, has been widely used in
intensity-based multimodal image registration. In this section,
we will present the basic concept of mutual information and its
origin, f-divergence. The problems of mutual information in
intensity-based image registration will then be analyzed, including
its sensitivities to the image overlap ratio.

3.1. Definition of f-divergence

In probability theory, f-divergence is a function Df ðPkQ Þ that
establishes a ‘‘distance” between one probability distribution P
and another probability distribution Q on a statistical manifold
(Ali and Silvey, 1966). In other words, f-divergence indicates the
discrimination between two distributions. Since the general notion
of f-divergence was first introduced and thoroughly investigated
by Csiszár (1963) and Ali and Silvey (1966), it is also known as
Csiszár f-divergences or Ali-Silvey distances.

Specifically, for two arbitrary distributions P and Q defined over
a space X, where P is absolutely continuous with respect to
Q , f-divergence from P to Q can be defined as (Ali and Silvey, 1966)

Df ðPjjQÞ ¼ EQ f
dP
dQ

� �� �
¼
Z
X

f
dP
dQ

� �
dQ ð3Þ

where f ð�Þ is a continuous convex function that satisfies (1)
f : ð0;þ1Þ ! ð�1;þ1�, (2) finite on ð0;þ1Þ, (3) strictly convex
at some points x 2 ð0;þ1Þ; and (4) f ð1Þ ¼ 0.

If P and Q are both absolutely continuous with respect to a ref-
erence distribution l on space X, such that dP ¼ pdl and
dQ ¼ qdl, then

Df ðPjjQÞ ¼
Z
X
f

dP
dQ

� �
dQ ¼

Z
X
f
dpðxÞ
dqðxÞ
� �

qðxÞdlðxÞ ð4Þ



Fig. 1. Different patterns of Joint histograms of different image pairs. (a) SPOT band 1 image; (b) SPOT band 4 image; (c) PalSAR HH polarization image; (d) Joint histogram of
two identical SPOT band 4 images; (e) Joint histogram of SPOT band 4 and SPOT band1 images; (f) Joint histogram of SPOT band 4 and PalSAR HH polarization images.
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In this definition we have a convention that

f
dpðxÞ
dqðxÞ
� �

qðxÞ ¼
0 if pðxÞ ¼ 0; qðxÞ ¼ 0

pðxÞlim
x!1

f ðxÞ
x if pðxÞ > 0; qðxÞ ¼ 0

(
ð5Þ

According to the definitions, f-divergence is naturally a mathe-
matical expectation of the odd ratio given by distributions P and
Q , andweighted by function f .With regard to the special casewhere
P is identical to Q , we have f-divergence Df ðPkQ Þ ¼ 0, which is the
minimumvalue indicating the closest distance fromP toQ .Df ðPkQ Þ
tends to increase as the disparity between P and Q increases.

Although f-divergence is often regarded as a ‘‘distance”
between two distributions, it is, in fact, not symmetric. In other
words, the f-divergence from P to Q does not necessarily corre-
spond with the f-divergence from Q to P. Statistically, in
Df ðPkQ Þ, distribution Q is often regarded as a model or theoretical
distribution of P, whereas P always represents the distribution of
an observation sample of Q . Thus, Df ðPkQÞ is a measure that mea-
sures the unidirectional disparity from the observation result to
the reference model. In the context of remotely sensed image reg-
istration, Df ðPkQÞ is favored to be adopted to mark the proximity
(alignment) from the floating image to the reference one.

3.2. Mutual information (Kullback-Leibler divergence)

With a specific kernel function f ð�Þ, the f-divergence will spe-
cialize into different divergences that constitute the f-divergence
family. Kullback-Leibler divergence (KL divergence, also known
as information divergence or relative entropy) is one of these
divergences (Kullback and Leibler, 1951) with kernel function
f ðxÞ ¼ x logðxÞ. Thus, KL-divergence is defined as:

DKLðPjjQÞ ¼
Z
X
pðxÞ log pðxÞ

qðxÞ
� �

dx ð6Þ

KL divergence was first studied by Kullback and Leibler in the 1950s
as a directed divergence from distribution P to distribution Q
(Kullback and Leibler, 1951). The logarithmic-like function f ð�Þ is
analogous to the kernel function of the Shannon entropy:

HðPÞ ¼ �
Z

pðxÞ log½pðxÞ�dx ð7Þ

Shannon entropy HðPÞ measures the self-information of a signal P
while KL divergence DKLðPkQÞ indicates the relative entropy from
signal P to signal Q . Mutual information is a special case of KL
divergence: it can only be applied to a situation where distribution
P is a joint distribution PXY and Q is the product of two marginal
distributions PX � PY , which is defined as

MIðPX ;PY Þ ¼ DKLðPXY jjPX � PYÞ

¼
ZZ

pXYðx; yÞ log
pXYðx; yÞ

pXðxÞ � pY ðyÞ
dxdy ð8Þ

In information theory, mutual information denotes the common
information shared between PX and PY by measuring the KL-
divergence from the joint distribution PXY to the product of the
two marginal distributions PX and PY (the product of two marginal
distributions is actually the hypothetical joint distribution if X and
Y are independent). In other words, mutual information quantifies
the dependence between the joint distribution of X and Y and what
the joint distribution would be if X and Y are independent. It is the
same case to any divergences between PXY and PX � PY . The higher
this divergence, the more dependent and the more similar they
are. Note that, despite slight difference between the ‘‘KL-
divergence” and ‘‘mutual information” in the field of probability
theory, they refer to the same measure in the context of image reg-
istration. In the rest of the paper, the ‘‘KL-divergence” and ‘‘mutual
information” are identical and refer to the measure defined in Eq.
(8). In the mathematical analysis, we will use the ‘‘KL-divergence”
to keep it mathematically rigorous, but use the ‘‘mutual informa-
tion” in the experimental description to keep it consistent with cur-
rent literature.
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In image registration, mutual information varies if the overlap
region of the image pair changes, which can be manifested through
the distribution of intensity pairs in the joint histogram. If the
floating image is perfectly aligned to the reference image, the
strongest dependency among all intensity pairs in these two
images exists. In this case, all intensity pairs aggregate and mutual
information obtains its maximum value. In all other cases, depen-
dency between the image pair becomes weaker. Consequently,
intensity pairs in the join histogram become dispersive and mutual
information will consequently decline.

3.3. Limitation of mutual information in image registration

So far, mutual information and its modified forms have been
used in remotely sensed image registration and have achieved sat-
isfactory accuracy in some multimodal image registrations
(Inglada and Giros, 2004; Inglada et al., 2007; Kern and Pattichis,
2007). In these models, the probability distributions of an image
pair are evaluated according to Eq. (9), where PXY is estimated by
the joint histogram of the image pair; and PX and PY are estimated
by the histogram of the overlap region in the two images respec-
tively, i.e.,

PXY ¼ 1P
ij
cij
JH

PX ¼
X
Y

PXY

PY ¼
X
X

PXY

ð9Þ

where JH is the joint histogram of the image pair, and cij is the ele-
ment in the JH matrix. The search methodology in the registration
process is equivalent to a mathematical optimization problem.
The optimal solution corresponds with the best transformation
parameters that lead to the maximum of the similarity measure,
which yields the optimum registration of the image pair. Thus,
the similarity measure must meet the following presupposition:
the floating image perfectly aligns to the reference image if and only
if the similarity measure obtains its maximum within the feasible
search space. However, mutual information may fail to yield the
optimum registration when the image pair has a small overlap
region.

In remotely sensed images, the spectral reflectance in a pixel is
usually related to its neighbor’s because ground objects are
arranged by orderliness and systematic concentration rather than
randomness. Thus, the mutual information of two aligned images
is relatively high. When shifting away from each other, the mutual
information of two misaligned images begins to decline. Theoreti-
cally, if the shift distance is greater than a critical value,2 the corre-
lation between two pixels will be negligible (Clark and Harper,
2000), which implies the mutual information is negligible as well.
Previous studies (Li et al., 2008; Liu et al., 2007; Maes et al., 1997;
Viola and Wells, 1997) have shown that mutual information declines
if the perfectly aligned image pair moves away from each other
(Fig. 2-a). However, we found that, if the image pair continues to
shift in a large scale and exceed the above-mentioned value, result-
ing in a small overlap ratio, mutual information will become unsta-
ble and exceed the desired one that indicates the optimum
transformation parameters (Fig. 2-b). Consequently, previous models
based on finding the maximum mutual information value will fail to
identify the optimum registration.

To analyze the variation of mutual information and its connec-
tion to overlap ratio, we start with a simplified registration case
2 In geostatistics, it is referred to as the range at which the semi-variogram (or
semi-variogram component) reaches the sill value. Presumably, autocorrelation is
essentially zero beyond the range.
where the reference image and the floating image are identical
and perfectly aligned. Under this circumstance, all the intensity
pairs in the joint histogram will aggregate on the diagonal as the
two images are perfectly aligned, and mutual information will
obtain its maximum value. We have

PXY ¼ 1P
ijcij

JH ¼ pij i ¼ j

0 i–j

�
ð10Þ

PX ¼
X
Y

PXY ¼ p11 p22 � � � pii � � � pMM½ �

PY ¼
X
X

PXY ¼ p11 p22 � � � pii � � � pMM½ �T
ð11Þ

Then, mutual information of a perfectly aligned image pair is esti-
mated according to the definition in Eq. (8). For simplicity, the
images are specialized into discrete distributions:

MI�ðIR; IFÞ ¼ DKLðPXY jjPX � PY Þ

¼
X
XY

pXYðx; yÞ log
pXYðx; yÞ

pXðxÞ � pY ðyÞ
¼ �

X
i

pii logðpiiÞ

¼ HðIRÞ ¼ HðIFÞ ð12Þ
In this equation, MI�ðIR; IFÞ is the mutual information of the

image pair IF and IR if the two images are perfectly aligned, and
HðIÞ is the Shannon entropy of the image I. According to Eq. (12),
the mutual information of these two identical images is equal to
the Shannon entropy of the image itself. As regards to a remotely
sensed image, the Shannon entropy of the entire image is always
greater than that of a subset image.3 That is,

HðI0RÞ 6 HðIRÞ
HðI0FÞ 6 HðIFÞ

ð13Þ

where I0R and I0F are the overlap regions of the reference image and
the floating image respectively. According to information theory,
the mutual information of two signals is always smaller than the
minimum of their Shannon entropy:

MIðP;QÞ 6 minfHðPÞ;HðQÞg ð14Þ
Therefore, during the registration process, we have

MIðI0R; I0FÞ 6 minfHðI0RÞ;HðI0FÞg < minfHðIRÞ;HðIFÞg
¼ MI�ðIR; IFÞ ð15Þ

in which MIðI0R; I0FÞ is the mutual information value obtained if the
transformed image IFðGl � ðX0ÞÞ and the reference image IRðXÞ have
their overlap regions I0F and I0R.

According to Eq. (15), even though the mutual information
value MIðI0R; I0FÞ may drift up and down due to the small overlap
region, MIðI0R; I0FÞ will not exceed the desired MI�ðIR; IFÞ obtained
when the two identical images are perfectly aligned. It means that,
in this simplified case, as long as we find the maximum of mutual
information throughout the optimization process, we can always
obtain the desired transformation T� to perfectly align the floating
image to the reference image, without being trapped into transfor-
mation parameters that lead to a small overlap region.

However, multimodal image registration does not offer the
same result. Mutual information may exceed the desired one when
there is small overlap region in common, which is more likely to
happen if these two images are inherently different or are deterio-
rated by noises. With regard to those multimodal cases, one-to-one
Under normal circumstances, we have an assumption that the histogram of one
image satisfies a certain distribution according to the Bernouli large numbers law, and
the information of one image can be depicted by the Shannon Entropy of the very
distribution. Thus, the information containing one image is always greater than the
information containing in the subset one.



Fig. 2. Mutual information tends to (a) decline when the images of the pre-aligned image pair (SPOT band 1 and SPOT band 4 images) move away from each other along the
horizontal direction for small displacements (within 100 pixels), and (b) tends to rebound for the larger displacements (within 600 pixels).
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mapping no longer exists between the intensities of the two
images. Intensity pairs populating in the joint histogram are not
aggregated in the diagonal, which results in
MI�ðIR; IFÞ < minfHðIRÞ;HðIFÞg ð16Þ
In this case, we cannot determine whether MI�ðIR; IFÞ is greater

than MIðI0R; I0FÞ or not. Moreover, MI�ðIR; IFÞ from Eq. (16) is much
smaller than that from Eq. (12) due to the inherent differences
between the image pair. As the multimodal image pair moves away
from each other, the mutual information of the overlap images ini-
tially declines because of the reduction of autocorrelation, and
then rebounds because of the unexpected local similarity of the
overlap region. With a smaller overlap region, only small intensity
intervals in both images are utilized to compose the joint his-
togram. Intensity pairs in the joint histogram will thin out and
aggregate around specific regions, which results in the instability
of mutual information. If we consider an extreme case where there
are only a few intensity pairs left in the joint histogram, intensity
pairs will ‘‘aggregate” to a clustering center. The dependency of
these intensity pairs (but not the dependence of the image pair)
will be significant, which will lead to a very high value of mutual
information. Thus, Eq. (15) is not always correct for all mutual
information value MIðI0R; I0FÞ 2 ð0;minfH0ðIRÞ;H0ðIFÞgÞ obtained dur-
ing the multimodal image registration process. If the overlap ratio
decreases to a critical value, the mutual information MIðI0R; I0FÞ will
exceed the optimalMI�ðIR; IFÞ that is supposed to be the maximum4

(Fig. 3). Therefore, in practice, multimodal image registration based
on mutual information should take the overlap ratio into considera-
tion. The variation of mutual information illustrated in Fig. 3 will
lead to an incorrect registration result when we directly apply a
search algorithm (gradient descent algorithm, genetic algorithm,
etc.) to optimize the mutual information. There exists a particular
search space around the optimum transformation parameters
(referred to as ‘‘feasible search space” hereinafter) only within which
4 The accuracy of image registration greatly depends on the interpolation method
used in the transformation process. Since we are not aiming at achieving sub-pixel
accuracy, but at analyzing its robustness to overlap ratio and noise interference,
accurate interpolation models (e.g., PVE, GPVE) do not contribute to the result, but
introduce extra computational cost. Therefore, we only use the simplest one, namely,
nearest neighbor interpolation.
the mutual information value obtained at the optimum transforma-
tion parameters is the highest. Thus, the search space of transforma-
tion parameters has to be restricted to guarantee the presupposition
that mutual information obtains its maximum if and only if the
image pair is perfectly aligned.

4. Similarity measure based on Jeffrey’s divergence

According to the previous analysis, multimodal image registra-
tion based on mutual information may yield an unreliable registra-
tion outcome because of the small image overlap region. To
mitigate this problem, we propose to use the symmetrical form
of mutual information, namely Jeffrey’s divergence, as the similar-
ity measure for multimodal image registration.

4.1. Definition of Jeffrey’s divergence

Jeffrey’s divergence (abbreviated as J-divergence), was first pro-
posed by Jeffreys (1939, 1946) as the ‘‘divergence” between two
distributions P and Q , defined as

DJðP;QÞ ¼ DKLðPjjQÞ þ DKLðQ jjPÞ

¼
Z
X
½pðxÞ � qðxÞ� log pðxÞ

qðxÞ
� �

dx ð17Þ

The definition implies that J-divergence is actually a symmetrical
form of KL-divergence by adding DKLðPkQÞ and DKLðQkPÞ. According
to the definition of f-divergence given in Eq. (4), J-divergence can
also be regarded as a specific case of the f-divergence family, with
the kernel function

f ðxÞ ¼ ðx� 1Þ logðxÞ ð18Þ
That is,

DJðP;QÞ ¼
Z
X
f
pðxÞ
qðxÞ
� �

qðxÞdx ¼
Z
X
½pðxÞ � qðxÞ� log pðxÞ

qðxÞ
� �

dx ð19Þ

In the context of image registration, J-divergence quantifies the dis-
crimination of an image pair by measuring the ‘‘distance” bi-
directionally between the joint histogram and the product marginal
histograms of two images. Analogous to the mutual information of
an image pair, we define the J-divergence between two images as



Fig. 3. Variations of the mutual information as the images of the multimodal image pair move away from each other along the horizontal direction. The value of mutual
information is much higher when the image pair is perfectly aligned than when there is a great horizontal malposition. (a) SPOT band 4 and PalSAR HH; (b) SPOT band 4 and
Landsat TM band 5.
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DJðIR; IFÞ ¼ DJðPXY ;PX � PYÞ

¼
ZZ

½pXYðx; yÞ � pXðxÞ � pY ðyÞ� log
pXYðx; yÞ

pXðxÞ � pY ðyÞ
dxdy ð20Þ

where similar to mutual information, PXY is the joint probability
distribution estimated from the joint histogram, and PX and PY

are the marginal probability distributions estimated from the mar-
ginal histogram of the image.

According to the definition of J-divergence, DJðIR; IFÞ can also be
written as:

DJðIR; IFÞ ¼ DJðPXY ;PX � PYÞ
¼ DKLðPXY jjPX � PY Þ þ DKLðPX � PY jjPXYÞ ð21Þ

The first term DKLðPXYkPX � PYÞ is the KL-divergence from PXY to
PX � PY , namely mutual information of two images. The mathemat-
ical expression of the second term DKLðPX � PYkPXYÞ looks like the
KL-divergence from PX � PY to PXY , but in fact, it does not strictly
obey the definition of KL-divergence in the registration context.
KL-divergence DKLðPkQÞ is only defined if P is continuous with
respect to Q . In other words, the definition only exits if QðxÞ ¼ 0
implies PðxÞ ¼ 0 for all x. In the context of image registration, PXY

is estimated from the joint histogram of two images; PX and PY

are estimated by summing PXY in two different directions (see Eq.
(9)). As a result, PXY ¼ 0 does not imply PX � PY ¼ 0 for all ðx; yÞ
(but PX � PY ¼ 0 does imply PXY ¼ 0 for all ðx; yÞ), which does not
satisfy the absolute continuity in the KL- divergence definition.
Since the second term of J-divergence is not a strictly defined
KL-divergence, the non-negativity property is not always preserved.
Nevertheless, for convenience, we still use the denotation
DKLðPX � PYkPXYÞ to refer to the dependence from PX � PY to PXY if
necessary.

4.2. Theoretical analysis

When compare the definitions in formula (8) and (20), the def-
initions of KL-divergence and J-divergence are quite similar but
slightly different in the summation terms, and the difference of
the summation terms results in the different performances
between J-divergence and mutual information. In the definition
of J-divergence, regardless of whether pXYðx; yÞ is greater than
pXðxÞ � pYðyÞ or not, we always have a non-negative summation
term:

½pXYðx; yÞ � pXðxÞ � pYðyÞ� log
pXYðx; yÞ

pXðxÞ � pY ðyÞ
� �

P 0 ð22Þ

That is, the J-divergence of an image pair DJðIR; IFÞ continues to
increase monotonously during the accumulation process. However,
mutual information is not the same case. When pXðxÞ � pYðyÞ is
greater than pXYðx; yÞ, the logarithm part becomes negative and
yields

pXYðx; yÞ log
pXYðx; yÞ

pXðxÞ � pYðyÞ
� �

6 0 ð23Þ

In the joint histogram, probability pXYðx; yÞ is proportional to the
number of intensity pairs populating location ðx; yÞ, whereas prob-
ability pXðxÞ or pY ðyÞ is related to the density of intensity pairs
around location ðx; yÞ. That is, whether pXYðx; yÞ is greater than
pXðxÞ � pYðyÞ or not depends on the distribution of intensity pairs
at and around location ðx; yÞ. In some locations close to the cluster
center of intensity pairs (see Fig. 4, the red point), pXY ðx; yÞ is signif-
icantly greater than pXðxÞ � pYðyÞ because many intensity pairs are in
this location. The other ðx; yÞ located at the fringe of the intensity
pairs’ aggregation zone (see Fig. 4, the blue point) will encounter
the situation where pXYðx; yÞ is smaller than pXðxÞ � pYðyÞ, which will
yield a negative summation term based on the definition of mutual
information. Note that no matter which quantitative relation
between pXYðx; yÞ and pXðxÞ � pYðyÞ, all summation terms will finally
yield a non-negative value KL-divergence value.

If the multimodal image pair is aligned perfectly, the intensity
pairs in the joint histogram will aggregate around certain regions.
For every location ðx; yÞ, the summation term in J-divergence meets
Eq. (22) and stays non-negative. However, mutual information will
encounter several locations that lead to Eq. (23) and will not keep
increasing monotonously. If the image pair is significantly different
in spectrum/coherency or contaminated by noises, the distribution
of intensity pairs in the joint histogram will be more dispersive.
More negative summation terms will emerge during the accumu-
lation of mutual information, which is why mutual information
declines as random factors interfere with the image pair. Superior



Fig. 4. Joint probability estimation of the intensity-pairs in the joint histogram, and
its relationship with intensity-pair distribution around it. The red intensity-pair
populates around the cluster center, which will yield out pXY ðx; yÞ > pXðxÞ � pY ðyÞ;
while the blue one is located at the fringe of the aggregation zone, which will turn
out to be pXY ðx; yÞ < pXðxÞ � pY ðyÞ. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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to mutual information, the summation term in J-divergence
remains non-negative even though the intensity pairs disperse
because of the difference of image pair and the noise interference.
Thus, compared with mutual information, J-divergence is capable
of obtaining a stable and higher value when the multimodal image
pair is perfectly aligned.

As analyzed in the Section 3.3, if only a few overlap regions exist
between image pairs, then only a small intensity interval in both
images will be utilized to compose the joint histogram. The inten-
sity pairs in the joint histogram are so aggregative that a majority
of locations satisfy the inequality pXYðx; yÞ P pXðxÞ � pYðyÞ. Conse-
quently, the mutual information obtains a high value that may
exceed the desired one. As to J-divergence, the summation term
in every location ðx; yÞ is smaller than that of mutual information
based on Eq. (24). D is the difference between the summation
terms of mutual information and J-divergence. It is non-negative
as long as pXYðx; yÞ P pXðxÞ � pYðyÞ. Thus, J-divergence obtains a
smaller value compared with mutual information if a small overlap
region exists.

D ¼ pXYðx; yÞ log
pXYðx; yÞ

pXðxÞ � pYðyÞ
� �

� ½pXYðx; yÞ � pXðxÞ � pY ðyÞ�

� log
pXYðx; yÞ

pXðxÞ � pY ðyÞ
� �

¼ pXðxÞ � pYðyÞ log
pXYðx; yÞ

pXðxÞ � pYðyÞ
� �

P 0 if pXY ðx; yÞ

P pXðxÞ � pYðyÞ ð24Þ
According to the above analysis, J-divergence obtains a higher

value than mutual information if the image pair is perfectly
aligned, but a lower value than mutual information if only small
overlap region exists between these two images. This condition
means that, in the multimodal image registration equivalent to a
mathematical optimization problem, J-divergence is capable of
providing a larger feasible search to determine the optimum regis-
tration. Therefore, image registration models based on J-
divergence is theoretically superior to mutual information in the
applicability of registering multimodal images that contains insuf-
ficient overlap region.

4.3. Experiments and discussions

The registration model based on J-divergence and mutual infor-
mation are applied to image pairs that captured from different sen-
sors. According to the deduction in the previous section,
registration model based on J-divergence is capable of providing
a larger feasible search space. Thus, we can reasonably presume
that J-divergence will theoretically be superior to mutual informa-
tion in multimodal image registration.

4.3.1. Variation of J-divergence in multimodal registration
In multimodal image registration, no direct relationship exists

between intensities in the two images. The dependence between
the image pair is much weaker compared to those in multi-
spectral image pairs. As a result, the mutual information value in
the registration model will be lower in the perfectly aligned posi-
tion and will suffer more peaks in the search surface, contributing
to the unreliability of the registration model. With its symmetrical
properties, J-divergence will show better performances than
mutual information in cases of multimodal image registration. A
comparative study on J-divergence and mutual information is con-
ducted through registrations of PalSAR image, Landsat TM image,
and DEM data, using SPOT Band 4 as the reference image. The 2-
dimensional variations (surface) of mutual information and J-
divergence as the floating images move away from the perfectly
aligned position are illustrated in Fig. 5. We can see that both
mutual information and J-divergence obtain peak values when
the image pairs are aligned perfectly (X Translation = 0, Y Transla-
tion = 0), but J-divergence can obtain a much higher value than that
of mutual information. When the two images move away from
each other, both J-divergence and mutual information decline,
but the value of J-divergence is relatively lower than mutual
information.

A special situation is presented where the floating image moves
along the diagonal of the reference image (Fig. 6). In such case, the
overlap ratio between the image pair declines most rapidly. We
can easily observe the variation and feasible search space of both
similarity measures regarding to the affection of overlap ratio. In
Fig. 6 that both similarity measures obtain high values at when
the image pair is aligned perfectly (Translation = 0). Comparing to
mutual information, J-divergence can obtain a value nearly twice
as high. When the two images move away from each other, both
J-divergence and mutual information decline. As we continue to
move the floating image and squeeze the overlap region, J-
divergence and mutual information will rise up and then exceed
the values obtained in the perfectly aligned position. Nevertheless,
J-divergence could obtain an even lower value than mutual infor-
mation. Rectangles in the figures suggest the feasible search spaces
in terms of both horizontal and vertical translations. As to these
multimodal image pairs, J-divergence can provide much larger fea-
sible search spaces (the red rectangle), allowing search algorithms
to specify the maximum similarity and determine the optimum
registration.

4.3.2. Multimodal registration on individual dimension
To examine the applicability of J-divergence in practical regis-

tration tasks, we apply the registration model to several multi-
modal image pairs that are manually misaligned. Fig. 7 presents
the reference image (SPOT Band 4) and floating images (ALOS Pal-
SAR HH polarization, Landsat TM Band 5, and DEM data) that were
used in the registration experiments. The SPOT Band 4 image is the
4th band of SPOT-5 Level-2A orthorectified product. The ALOS Pal-



Fig. 5. Two-dimension surfaces of mutual information and Jeffery’s divergence when the images of the image pair move away from each other in both horizontal and vertical
directions. (a) mutual information of SPOT band 4 and PalSAR HH; (b) Jeffery’s divergence of SPOT band 4 and PalSAR HH; (c) mutual information of SPOT band 4 and Landsat
TM band 5; (d) Jeffery’s divergence of SPOT band 4 and Landsat TM band 5; (e) mutual information of SPOT band 4 and DEM data; (f) Jeffery’s divergence of SPOT band 4 and
DEM data.
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SAR (HH polarization) image was radiometrically and terrain cor-
rected by the data provider (Alaska Satellite Facility, ASF). The
Landsat TM image is a Level-1T (orthorectified) Landsat 5 product.
The DEM data was acquired from the Shuttle Radar Topographic
Mission (SRTM) at 1 arc-second (�30 m) spatial resolution. Since
the topographical variation of the selected region ranges from



Fig. 6. Variations of Jeffery’s divergence and mutual information as the floating images move away along the diagonal of the reference image, with SPOT band 4 as the
reference image and PalSAR HH (a), Landsat TM band 5 (b), DEM data (c) as floating images. The red rectangle in each sub-figure reveals the feasible search spaces in these
two dimensions using Jeffery’s divergernce as the similarity measure while the blue rectangles reveal that of mutual information.

Fig. 7. Multimodal images, which are misaligned, are used as test data to examine the applicability of J-divergence in practical registration tasks, (a) SPOT band 4, (b) PalSAR
HH polarization, (c) Landsat TM band 5, (d) DEM data. The geographical extension of the reference image (a) is 200 pixels left of the floating images (b, c and d).
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�7 m to 30 m, we limited the ramp color within such range to
increase the color contract. All images were resampled to 10 m res-
olution and gridded into the same spatial reference. Each image
contains 700 ⁄ 700 pixels. The geographical extension of the refer-
ence image (SPOT Band 4) is 200 pixels left of the floating images.
In the experiment, we moved the misaligned floating images
across the reference in the horizontal direction and then examine
the variations of the two similarity measure. The translation
parameter of horizontal direction is from 0 to 650 pixels (overlap
ratio declines from 100% to 8%). Values of Jeffrey’s divergence



Fig. 8. Performances of mutual information and J-divergence involving misaligned multimodal image pair cases. Variations of the two similarity measures as the images of
the misaligned image pair (displacement = 200 pixels) moves across each other along horizontal direction are presented in (a), (b) and (c), with SPOT band 4 as the reference
image and PalSAR HH, Landsat TM Band5, DEM data as floating images. The red rectangles in (a), (b) and (c) reveal the feasible search spaces in horizontal direction using
Jeffery’s divergernce as the similarity measure while the blue rectangles reveal that of mutual information. Sub-image (d–i) are the corresponding registration results within a
wide range of searching space, using Jeffrey’s divergence (d, f, and h) and mutual information (e, g, and i) as the similarity measures.
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and mutual information at each translation pixel are enumerated.
A promising similarity measure should give a peak at 200-pixel
and lower value even if a small area is overlapped by two images.
By identifying the maximum similarity value, a sound search
algorithm will find out the correct transformation parameters (at
200-pixel) to register the floating images.

Fig. 8 shows the variations of J-divergence and mutual
information in the experiments (Fig. 8-a–c), as well as the registra-
tion results corresponding to the highest similarity measures
(Fig. 8-d–i). These registration results are all presented by over-
lapped image pairs, with the upper images set to 50% transparency
so that we can directly see the performances of these two similarity
measures. In Fig. 11-a–c, both similarity measures obtain peaks at
200 pixels and exhibit rebound at the fringe of the image extent.
J-divergence can obtain a much higher value than mutual informa-
tion as the image pair is registered and a smaller value when the
overlap region narrows. The feasible search space of J-divergence
in all three cases, indicated by the red rectangle, are much larger
than those of mutual information, which are marked by the blue
rectangle. Fig. 8-d–i show the registration results when we search
the transformation parameters at a large scale (up to 550 pixels),
in which Fig. 8-d, f, and h are using J-divergence as the similarity
measure and Fig. 11-e, g, and i are using mutual information. Since
J-divergence obtains the maximum value at the 200-pixel-
displacement in every case, floating images can be correctly aligned
to the reference image. However, with mutual information, the
value obtained at the 200-pixel-displacement will be exceeded
Fig. 9. Multimodal images, which cover the same terrestrial region, were used to exam
translation and scaling in both horizontal and vertical directions as well as rotation, (a)
when we search the parameter space at a large range, for example,
550-pixel-displacement. Therefore, the registrationmodel based on
mutual information will incorrectly align the floating images to the
reference image at 550-pixel, because the registration model is
established under the assumption that the best registration corre-
sponds to the maximum value of the similarity measure.

In practical registration tasks, transformation of the floating
image is determined by five parameters that comprise the affine
transformation model: translation and scaling in both horizontal
and vertical directions as well as rotation. Thus far, we have only
explored the translation components. The following experiments
will present the performances of J-divergence and mutual informa-
tion in all five dimensions when registering different multimodal
image pairs. Fig. 9 shows the multimodal images that were used
in the experiments: SPOT image (2008-11-10), PalSAR image
(2009-05-08), TM image (2009-01-02), and DEM data (2009). All
of these images cover the same terrestrial scene. SPOT image was
the reference image, and the rest will be the floating images. Since
the reference and floating images cover the same scene, they will
be registered when the transformation parameters are as follows:
translation X = 0, translation Y = 0, scaling X = 1, scaling Y = 1 and
rotation = 0. Sub-figures in Fig. 10 enumerate the variations of
J-divergence and mutual information in five dimensions when reg-
istering different multimodal image pairs, fromwhich we can com-
pare the feasible search space of these two similarity measures.
Within the feasible search space, the registration model will
always generate a correct result with a sound search algorithm.
ining the performance of J-divergence and mutual information in five dimensions:
SPOT band 4, (b) PalSAR HH polarization, (c) Landsat TM band 5, (d) DEM data.



Fig. 10. Variations of Jeffery’s divergence and mutual information of an aligned image pair when involving 5 transformation parameters separately, with SPOT band 4 as the
reference image and PalSAR HH polarization (a(1)–a(5)), Landsat TM band 5 (b(1)–b(5)) and DEM data (c(1)–c(5)) as floating images. Sub-figure a(1), b(1), c(1) are translation
along the horizontal direction; Sub-figure a(2), b(2), c(2) are translation along the vertical direction; Sub-figure a(3), b(3), c(3) are scaling along the horizontal direction; Sub-
figure a(4), b(4), c(4) are scaling along the vertical direction; Sub-figure a(5), b(5), c(5) are rotation around the center of the reference image.
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Fig. 11. Data of the comparative registration experiment. (a) Landsat TM band 4 image, (b) ALOS PalSAR image HH polarization image.

Table 1
Examples of divergence family and their kernel functions.

Divergence Kernel function f ð�Þ
Kullback-Leiber (KL-divergence, mutual information) x� logðxÞ
Jeffrey’s divergence (J-divergence) ðx� 1Þ � logðxÞ
v2-divergence 1

2 ðx� 1Þ2
Lin K-divergence x� log 2x

1þx

� �
Kolmogorov distance 1

2 jx� 1j
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Having a larger size of the feasible search space is equivalent to the
capability to register greatly misaligned (or insufficient scene over-
lap) image pair.
Fig. 12. Registration results by using different similarity measures: (a) mutual inform
divergence.
The sub-figures in Fig. 10 show that both similarity measures
can obtain a peak at the desired transformation parameters. As
to the translation components, sub-figures a (1), a (2), a (3) and
b (1), b (2), b (3) show that the variations are similar to those in
Fig. 11. J-divergence obtains a higher value than mutual informa-
tion but a lower value with a smaller overlap region. In scaling
components, sub-figures c (1), c (2), c (3) and d (1), d (2), d (3)
show that both similarity measures obtain very high values when
the scaling is close to 0. As scaling becomes lower, the floating
image becomes smaller. As scaling becomes close to 0, the floating
image will be transformed into an infinitesimal image, which
results in a very small overlap region between the reference and
floating images. Thus, the value of similarity will become very high.
However, when scaling is larger than 1, the overlap region of the
ation, (b) v2-divergence, (c) Lin K-divergence, (d) Kolmogorov distance and (e) J-



Fig. 13. A chessboard visualization of the registration result based on J-divergence. Six partial enlargements show the favor alignment in the water borders and traffic lines.

Table 2
Registration parameters of five transformation models based on different similarity measures.

Similarity measure Transformation parameter Estimated similarity value Desireda similarity value

Translation X Translation Y Scaling X Scaling Y Rotation

Mutual Information 2609 664 0.982 0.979 2.159 0.652 0.373
v2-divergence 2770 566 1.131 0.942 3.299 0.591 0.352
Lin K-divergence �902 �295 0.983 1.011 2.267 0.959 0.865
Kolmogorov distance 998 2189 1.153 1.078 3.135 0.936 0.691
J-divergence 499 �603 0.999 1.009 5.463 0.763 0.763
Manual registration 498.41 �603.52 0.999 1.000 5.465 – –

a The ‘‘Desired Similarity Value” is the similarity value corresponding to the optimum registration.

Table 3
Comparisons of feasible search space in each dimension and outperformance of J-divergence in providing larger feasible search space, with SPOT being the reference image and
PalSAR image as the floating one. The indexes in first column refer to 5 different test image pairs.

Image pair Similarity measurement Translation X Translation Y Scaling X Scaling Y Rotation Overall improvement

1 MI (�272,266) (�186,167) (0.315,1) (0.336,1) (0,2p) -
J-divergence (�362,377) (�271,288) (0.104,1) (0.117,1) (0,2p) –
Improvement 37.361% 58.357% 30.803% 32.982% 0.000% 30.492%

2 MI (�256,278) (�215,207) (0.401,1) (0.283,1) (0,2p) –
J-divergence (�353,357) (�271,288) (0.212,1) (0.146,1) (0,2p) –
Improvement 32.959% 57.583% 31.553% 19.107% 0.000% 26.838%

3 MI (�309,289) (�241,207) (0.392,1) (0.291,1) (0,2p) –
J-divergence (�386,365) (�313,277) (0.145,1) (0.132,1) (0,2p) –
Improvement 25.585% 31.696% 40.625% 22.426% 0.000% 23.279%

4 MI (�283,326) (�276,223) (0.352,1) (0.262,1) (0,2p) –
J-divergence (�359,427) (�349,368) (0.139,1) (0.102,1) (0,2p) –
Improvement 29.064% 43.687% 32.870% 21.680% 0.000% 24.559%

5 MI (�227,254) (�236,247) (0.393,1) (0.368,1) (0,2p) –
J-divergence (�314,337) (�295,326) (0.219,1) (0.193,1) (0,2p) –
Improvement 35.343% 28.571% 28.666% 27.690% 0.000% 23.379%
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image pair will remain constant (the region covered by the refer-
ence image). The similarity between the reference and floating
images is irrelevant to overlap interference, but only relevant to
the dependence of the image pair. Thus, the similarity measures
decrease as the scaling components become larger than 1. As to
the rotation component, we rotated the floating image around
the center of the reference image. During the rotation, the overlap
region of the image pair occupies the majority of the area covered
by the reference image. Both similarity measures obtain the high-
est values at 0-rotaion when we rotate the floating image from �p
to p (see Fig. 10-a (5), b (5) and c (5)). All sub-figures in Fig. 10
show that J-divergence can obtain a higher value than mutual
information at the optimum transformation, but a lower value
with a small overlap region. The feasible search space provided
by J-divergence is larger than that by mutual information.
5 By resampling all floating images into the same resolution, it will be more
convenient to estimate the feasible search space in one dimension while keeping
other dimensions constant. Even though the resample process would change the
magnitude feasible search space in scaling dimensions, it would not differ the
comparison results between J-divergence and mutual information.
4.3.3. Comparative performance of J-divergence in multimodal image
registration

So far, we have test the variations of J-divergence in every com-
ponent of the affine transformation model separately. The J-
divergence is capable of providing larger feasible search space in
all components except the Rotation one. However, in practical mul-
timodal registration tasks, the floating images are transformed
synthetically in all components. This is a more complicated pro-
cess, especially in situations of registering multimodal images cov-
ering large area over complex terrain. It is difficult to visualize the
5-dimensional feasible search spaces provided by the similarity
measures and intuitively compare their size. In order to examine
the applicability of J-divergence in practical registrations of multi-
modal image pairs, we applied the registration model to the image
pair whose scene-covers are partially overlapped. In addition, to
justify the superiority of J-divergence, another three divergences:
v2-divergence, Lin K-divergence and Kolmogorov distance, whose
kernel functions are illustrated in Table 1, were also included as
similarity measures in the practical registration experiment. To
find out the optimum transformation parameters, the model has
to search some transformation situations that result in even smal-
ler overlapping than the scene overlapping. In such cases, the sim-
ilarity value of two images may be very high and probably exceed
the one that indicates the optimum registration, leading to an
incorrect registration result. Thus the stability of the model greatly
depends on the feasible search space provided by the similarity
measures.

Fig. 11 presents the reference image (Landsat TM band4, 2009-
11-02) and floating one (ALOS PalSAR at HH polarization, 2007-06-
24) and their scene overlap region (the blue translucent rectangle).
Both the Landsat TM image and ALOS PalSAR image have been
orthorectified by the data providers to remove the terrain relief
distortions. The TM image was pre-resampled into the same reso-
lution as the ALOS PalSAR image (12.5 m) for the better controlling
of the scaling components, since the larger scaling factors will lead
to extremely large or small transformed images. The resolution of
the TM image is 3221 ⁄ 2460 after resampling, and the resolution
of the ALOS PalSAR image is 2428 ⁄ 2425. Both the two images
cover complex terrain area with elevation ranging from �4 to
1262 meters. Various surface land cover types, such as cropland,
grassland, forest, urban impervious surface and water, etc., are
included in this study region.

In the registration process, we have the following configura-
tions to keep the registration model running properly: (1) the over-
lap region of the two image are set to be not less than 30% while
searching the transformation parameters; (2) the scaling compo-
nents are set to be within the interval of [0.7, 1.5] to avoid an extre-
mely large or small transformed image; (3) with the purpose of
eliminating the interference of the search algorithm, we enumer-
ated all the parameter combinations that meet (1) and (2) and esti-
mate their corresponding similarity values. According to the above
analysis, the feasible search space provided by J-divergence is sig-
nificantly larger than that of mutual information. When searching
the transformation parameters in a larger range, J-divergence is
more likely to identify the correct registration than other similarity
measures.

Fig. 12 presents the registration results using five different sim-
ilarity measures: (a) mutual information, (b) v2-divergence, (c) Lin
K-divergence, (d) Kolmogorov distance and (e) J-divergence. The
transformed ALOS PalSAR images are translucently overlapped on
the TM images for better presenting the registration results. All
similarity measures except the J-divergence failed to identify the
correct transformation parameters since their feasible search space
is not large enough. When searching some parameters that lead to
a small overlap between two images, these similarities obtain very
high values, and such transformation parameters will be incor-
rectly considered as the optimum registrations. As to J-
divergence, even though the overlapping between the image pair
decreased to 30%, the estimated value is still lower than that of
the desired one corresponding to the perfect alignment. Thus
model using J-divergence as the similarity measure can success-
fully identify the correct transformation parameters according to
the maximum of the similarity value. A chessboard visualization
of the registration result based on J-divergence is presented in
Fig. 13. Six partial enlargements show the favor alignment in the
water borders and traffic lines.

Table 2 shows the transformation parameters when the five
similarity measures obtain their maximums in the registration
process. The bottom row is the transformation parameters of man-
ual registration, which are regarded as the correct transformation
parameters of this image pair. The last two columns of the table
are the estimated similarity value of the final registrations and
the desired similarity values corresponding to the perfect align-
ment, respectively. We can see that the estimated similarity values
of former four measures, including mutual information, v2-
divergence, Lin K-divergence and Kolmogorov distance, are signif-
icantly greater than the desired ones. Thus by finding the maxi-
mum value of the similarity measures, they all fail to identify the
correct parameters and trap in small overlapping between the
image pair. Fortunately, the feasible search space provided by J-
divergence is large enough so that the desirable J-divergence value
remains the maximum in the registration process. Thus the J-
divergence can successfully identify the correct transformation
parameters, which are very close to manual registration.
4.3.4. Quantitative assessment
In order to quantitatively assess the feasible search space pro-

vided by J-divergence, we presented three tables to show the supe-
riority of J-divergence against mutual information in registering
various multimodal image pairs: SPOT and PalSAR (Table 3), SPOT
and TM (Table 4), as well as SPOT and DEM (Table 5). Each table
presents the experiments of five image pairs which are pre-
registered manually. All of these images have been resampled into
the same resolution as the SPOT image (10 m),5 and each image has
650 ⁄ 650 pixels. During the quantitative assessment, we first esti-
mate the J-divergence and mutual information of the registered
image pair, which are the similarity values corresponding to the
optimum registrations. Then the floating images were gradually
deformed along each transformation component (Translation X,



Table 4
Comparisons of feasible search space in each dimension and outperformance of J-divergence in providing larger feasible search space,with SPOT being the reference image and
Landsat TM image as the floating one. The indexes in first column refer to 5 different test image pairs.

Image pair Similarity measurement Translation X Translation Y Scaling X Scaling Y Rotation Overall improvement

1 MI (�412,464) (�391,423) (0.291,1) (0.283,1) (0,2p) –
J-divergence (�619,630) (�538,543) (0.113,1) (0.097,1) (0,2p) –
Improvement 42.580% 32.801% 25.106% 25.941% 0.000% 24.434%

2 MI (�453,448) (�408,461) (0.269,1) (0.225,1) (0,2p) -
J-divergence (�601,595) (�519,522) (0.106,1) (0.113,1) (0,2p) -
Improvement 32.741% 19.793% 22.298% 14.452% 0.000% 17.353%

3 MI (�419,425) (�362,450) (0.304,1) (0.267,1) (0,2p) –
J-divergence (�591,611) (�481,579) (0.172,1) (0.126,1) (0,2p) –
Improvement 42.417% 30.542% 18.966% 19.236% 0.000% 21.403%

4 MI (�436,419) (�424,461) (0.293,1) (0.225,1) (0,2p) –
J-divergence (�572,553) (�596,603) (0.154,1) (0.107,1) (0,2p) –
Improvement 31.579% 35.480% 19.661% 15.226% 0.000% 19.705%

5 MI (�422,431) (�434,467) (0.241,1) (0.329,1) (0,2p) –
J-divergence (�598,615) (�573,553) (0.119,1) (0.163,1) (0,2p) –
Improvement 42.204% 24.972% 16.074% 24.739% 0.000% 20.807%

Table 5
Comparisons of feasible search space in each dimension and outperformance of J-divergence in providing larger feasible search space,with SPOT being the reference images and
DEM data as the floating one. The indexes in first column refer to 5 different test image pairs.

Image pair Similarity measurement Translation X Translation Y Scaling X Scaling Y Rotation Overall improvement

1 MI (�416,430) (�431,426) (0.261,1) (0.280,1) (0,2p) –
J-divergence (�532,546) (�587,561) (0.113,1) (0.109,1) (0,2p) –
Improvement 27.423% 33.956% 20.027% 23.750% 0.000% 20.449%

2 MI (�387,401) (�419,438) (0.291,1) (0.278,1) (0,2p) –
J-divergence (�452,493) (�498,504) (0.166,1) (0.193,1) (0,2p) –
Improvement 19.924% 16.919% 17.630% 11.773% 0.000% 13.132%

3 MI (�402,389) (�383,429) (0.304,1) (0.267,1) (0,2p) –
J-divergence (�521,508) (�451,535) (0.172,1) (0.126,1) (0,2p) –
Improvement 42.417% 30.542% 18.966% 19.236% 0.000% 21.403%

4 MI (�421,433) (�395,417) (0.277,1) (0.295,1) (0,2p) –
J-divergence (�519,537) (�504,539) (0.161,1) (0.192,1) (0,2p) –
Improvement 23.653% 28.448% 16.044% 14.610% 0.000% 16.133%

5 MI (�369,391) (�388,379) (0.314,1) (0.270,1) (0,2p) –
J-divergence (�449,512) (�491,457) (0.228,1) (0.194,1) (0,2p) –
Improvement 26.447% 23.598% 12.536% 10.411% 0.000% 15.808%
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Translation Y, Scaling X, Scaling Y, and Rotation). Meanwhile, J-
divergence and mutual information of the deformed image pairs
were estimated. The deformations continued until the estimated
similarity value of the deformed image pair exceeded the optimum
one. This deformation was then considered as the maximum search
range (feasible search space) of the corresponding component. Only
within this search range can the correct registration be found based
on the maximum similarity value. Similarity measure that can pro-
vide larger feasible search space is considered to be superior to
others.

In three tables, the feasible search space provided by mutual
information and J-divergence in five components are presented.
Besides, the improvements of J-divergence over mutual informa-
tion in each component are estimated according to the length
the search range. For example, as to the Image Pair #1 in Table 3,
the interval of the feasible search space in Translation X component
is (�272, 266) and (�362, 377), as respectively provided by mutual
information and J-divergence. As to mutual information, when the
translation X component varies within (�272, 266), we can guaran-
tee that mutual information obtains its maximum at 0-
displacement (the optimum parameter). The same situation is true
with J-divergence within interval (�362, 377). The interval (�362,
377) is larger than (�272, 266) by 37.361%, we consider this as the
improvement of J-divergence over mutual information in the
Translation X component. In addition, we consider the geometric
average of improvements in all components to be overall improve-
ment of the feasible search space, using the Eq. (25) bellow:

imp ¼
YN
i¼1

ðimpi þ 1Þ
 !1=N

� 100%� 1 ð25Þ

The impi is the improvement in transformation component i, and N
is the total number of components of the transformation model, and
N = 5 in affine transformation model. The overall improvements of
J-divergence over mutual information are present in the last column
of the tables. For example, as to the SPOT-PalSAR image pair #1 in
Table 3, the overall improvement of J-divergence over mutual infor-
mation in providing feasible search space is 30.492%. According to
the compassions of feasible search spaces of 15 selected multi-
modal image pairs, the overall improvements of J-divergence over
mutual information is significant, ranging from 23% to 30% for
SPOT- PalSAR image pairs, ranging from 17% 24% for SPOT-TM
image pairs, and ranging from 13% to 20% for SPOT-DEM data pairs.
Registration models based on J-divergence allow for searching the
transformation parameters in a much larger space while guarantee-
ing the validity of the registration result. In practical application,
the superiority of the J-divergence on providing larger feasible
search space enables the model to register multimodal image pairs
which have smaller scene overlap regions. In other words, registra-
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tion models based on J-divergence are much more robust and appli-
cable than models based on mutual information.
5. Conclusions

Entropy-based (e.g., mutual information, known as
KL-divergence) image registration models are usually unreliable
in practical multimodal image registration tasks, particularly
regarding to image pairs with insufficient scene overlap region or
greatly misaligned. The similarity measures will become unstable
and fail to denote the optimum registration. In this paper,
J-divergence, the symmetric form of KL-divergence, was intro-
duced as the similarity measure for multimodal image registration.
We mathematically demonstrated that J-divergence is capable of
providing a larger feasible search space than mutual information,
laying the theoretical foundation that J-divergence is superior for
registering image pairs with insufficient scene overlap region.

The J-divergence based registration model was applied to regis-
ter multimodal images, using a Landsat TM image, a PalSAR image
and DEM data as floating images and a SPOT image as the reference
one. The performances were compared with registration models
based on mutual information and other entropy-based measures
such as v2-divergence, Lin K-divergence and Kolmogorov distance.
The results show that J-divergence is less sensitive to scene overlap
ratio than other measures. During the registrations, J-divergence is
capable of obtaining a higher value than mutual information if the
two images are perfectly aligned and a lower value when there is
small overlap region between the image pair. According to the
quantitative results, J-divergence can provide a much larger feasi-
ble search space than mutual information (13–30% larger), which
allows the search algorithm to determine the optimum transfor-
mation parameters. The improvement in obtaining larger feasible
search space is equivalent to the ability to register greater misa-
ligned or smaller scene overlap image pairs. Thus, the proposed
registration model based on J-divergence is more applicable and
capable of registering multimodal image pairs with insufficient
overlap region.

With the J-divergence as the similarity measure, the model can
guarantee that the maximum of the similarity measure will be
obtained only when the floating image perfectly aligns, even
though the scene overlap of the image pair is not sufficient. The
optimization algorithm can search the parameters in much broader
ranges without getting tripped in small overlapping situations.
However, more efficient optimization algorithms are required
when the feasible search space becomes much larger. Moreover,
the estimation of image joint histogram during the optimization
process is quite time-consuming. Thus, the registration model
based on J-divergence is more suitable to register small size images
until better approaches are developed for the estimation of image
joint histogram. More effort is required towards this way in order
to make the method truly operational in practical multimodal
image registration tasks.
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