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Abstract

This paper demonstrates that multitemporal satellite SAR images are most suitable for monitoring the rapid changes of cultivation systems

in a subtropical region. A new method is proposed by applying case-based reasoning (CBR) techniques to the classification of SAR images.

Stratified sampling is carried out to collect the cases so that the variations of backscatters within a class can be appropriately captured. The

use of discrete cases can conveniently represent the internal changes of a class under complicated situations, such as spatial changes in soil

conditions and terrain features. These spatial variations are difficult to represent by using rules or mathematical equations. The proposed

method has better classification performance than supervised classification methods in the study area. The case library is reusable for time-

independent classification when the SAR images are acquired at the same time of the crop growth cycles for different years. The proposed

method has been tested in the Pearl River Delta in South China.
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1. Introduction

The drastic changes of global landscape were witnessed

in the last a few decades because of rapid urbanization

process in the world. Land use changes have been acceler-

ated in many rapid-growing countries. There are growing

concerns about the impacts of land use changes because

they have been blamed for a series of environmental

problems such as global warming, flooding, soil erosion,

pollution, and food shortage. The information of land use

and land use changes has been used as the key input to

many environmental models in estimating the impacts of

global changes (Sellers et al., 1995). These models are

important for estimating and predicting the consequences

of specific human behaviors and land use policies.

Remote sensing has been widely used to obtain land use

information (Li & Yeh, 1998). However, conventional

optical remote sensing cannot acquire good-quality images

when the weather is cloudy. In tropical and subtropical

regions, it is very difficult to obtain the commonly used
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satellite images, such as TM and SPOT images during the

seasons of crop growth. Usually, only 1–2 dates of these

images are available within a year because of cloudy

weather. Most of these images can only be acquired during

autumn or winter seasons. This is very unsatisfactory for

monitoring agricultural activities, mapping fast urban ex-

pansion and agricultural land loss, and detecting illegal land

development in fast-developing areas.

Orbital SAR is a fast-developing technique that can

overcome some of the limitations in conventional remote

sensing. SAR technologies allow the same resolution to be

possible from aircrafts and satellites. This means that much

detailed ground information can be regularly observed using

orbital SARs. In recent years, some operational orbital radar

systems have been available for regular collection of remote

sensing data. These orbital systems include ERS-1, 2 (C

band, VV polarization at 23j) and JERS-1 (L band, HH-

polarized at 35j). The most recent operational orbital radar

system is the Canadian Radarsat which consists of C band

SAR with HH polarization. The system has a variety of

modes for various resolutions and swath widths.

Satellite SAR is able to obtain the information about the

ground at ‘real’ time. This can permit the monitoring of

rapid land use changes and urban development, and thus
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provide very useful information for land use planning and

management. For example, JERS-1 SAR images from

various years were used to analyze land use changes

(Angelis et al., 2002). Textural information was derived

from SAR images to assist the classification of land use

types (Kurosu et al., 1999).

However, the existing orbital SARs have only one single

band, such as C band of ERS-2 and C band of Radarsat.

Although useful, when taken alone, each of these orbital

SARs will encounter limitations for land cover classification

because of signal saturation at high levels of biomass and

ambiguities between various land cover types (Dobson et

al., 1995, 1996). Many efforts have been dedicated to

improve the classification accuracy for SAR images. One

possible solution is to increase the temporal information as

compensation. It is easy to acquire multitemporal satellite

SAR images that can cover the whole growth circle of crop

systems.

There is also a need to develop the methodology for

classifying SAR images. Numerous studies have been

carried out to classify land use types and detect land use

changes from remote sensing (Carpenter et al., 1997;

Huang & Jensen, 1997; Li & Yeh, 1998; Richards & Jia,

1999). There are experiments on developing knowledge-

based systems (KBS) that use rules to classify radar

imagery. SAR images seem to be most suitable for the

experiment of using KBS. Studies indicate that orbital

SARs can obtain quite stable sensors’ signals. For exam-

ple, the time variance in the ERS-1 SAR instrument is

within F 0.4 dB (Attema, 1992; Dobson et al., 1995). This

benefits a number of investigations with repeatable experi-

ments. In particular, the stability of SAR signals has

presented a unique opportunity to the use of KBS for

classification. However, a problem with the KBS classifi-

cation is that the backscatter of SAR is affected by soil

moisture. The same or similar conditions of soil moisture

are important for successful implementation of KBS meth-

ods for classification.

The rule-based techniques have limitations in imple-

mentation because the identification and definition of

rules are usually tedious, user-unfriendly, and time-con-

suming. This study proposes a new method for classify-

ing remote sensing imagery based on the CBR

techniques. CBR, which is a different type of knowl-

edge-based systems (KBS), uses pervious cases to solve a

new problem. It is considered that much of human

reasoning is case based rather than rule based (Schank

& Cleary, 1995). People often recall previous experiences

when they face a new problem. Although CBR has a

great appeal to many fields (e.g., engineering, medicine,

and business), it has not been applied to the classification

of remote sensing data because it is a new technique.

In this study, the method is applied to the classification of

SAR images, but it is also valid for the classification of

other sources of remote sensing data. The experiment will

be carried out in a fast-growing area in the Pearl River
Delta, South China, as compared to our previous studies that

use optical remote sensing (Li & Yeh, 1998). The subtrop-

ical region is frequently affected by cloudy weather. Usual-

ly, only 1–2 dates of optical satellite images (e.g., Landsat

TM and SPOT images) are available in autumn or winter

seasons each year. These limited images can hardly be used

to monitor agricultural activities such as the growth con-

ditions of crops and the changes of cultivation systems.

Some other studies have been carried out by using SAR

images to monitor and estimate rice production in this

region (Shao et al., 2001). However, this study is different

because of using a new approach for classifying SAR

images.
2. Case-based reasoning for classifying SAR data

Many existing classification methods require training

inputs and application-sensitive parameters. Users must

have a good understanding of the area under study so

that they can select appropriate training sites, algorithms

and thresholds. This assumption can lead to a signifi-

cant discrepancy in the classification of the same study

area between different users because users’ knowledge

and preferences have introduced uncertainties to the

classification.

Knowledge-based systems (KBS) are considered as a

good alternative to traditional classification methods with

better performance. There is a need to develop such

systems to facilitate the interpretation of remote sensing

data in a more objective and efficient way. Supervised

classification is a commonly used method, but it strongly

depends upon users’ skills and training procedures and

often involves time-consuming analysis. KBS are useful

when concrete knowledge about the application domain is

available. It is expected that KBS can automatically

classify remote sensing images without operator’s inter-

vention (Newkirk & Wang, 1990; Pierce et al., 1994). This

is achieved through a sequence of processes which are

bounded by rules. Numerous studies using expert systems

or knowledge-based systems have been reported in remote

sensing applications (Kartikeyan et al., 1995; Murai &

Omatu, 1997; Huang & Jensen, 1997). For example,

Huang and Jensen (1997) built a knowledge-based system

to perform a wetland classification of Par Pond on the

Savannah River Site, SC using SPOT multispectral imag-

ery and GIS data. Stefanov et al. (2001) used logical

decision rules with various data sets to assign class values

to each pixel.

Rule-based techniques, a common type of KBS, have

been widely tested for the classification of radar images and

produced satisfactory results in many applications (Dobson

et al., 1996). Pierce et al. (1998) find that the same rules

developed in previous studies can be applied to other studies

for a time-independent classification of land cover on radar

images. An example of the rules for land cover classifier
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using SAR images is described as follows (Pierce et al.,

1998):
IF L-hv>0.91�L-hh-33 dB THEN tall vegetation

ELSE C-hv>� 20 dB THEN shortveg

ELSEIF C-hvV� 20 dB and L-hv <� 20 dB THEN surface

ELSE THEN shortveg
The rule-based techniques assume that knowledge

should be well bounded and can be clearly expressed.

However, there are difficulties in providing rules because

most applications involve complicated elements and rela-

tions. The constructing of rule bases is very time-con-

suming because a large set of rules is usually required.

For example, McAvoy and Krakowski (1989) defined

approximately 100 rules to classify ice floes into different

‘age’ categories from SAR images. Applying pieces of

knowledge to a class with arbitrary or abstract rules is

usually difficult to understand. The problems become

worse as there are usually only incomplete and inconsis-

tent knowledge.

Furthermore, the signature of a class may not be stable

because there are spatial variations of spectral properties.

Different soil and roughness conditions can affect the

backscatter properties of radar images (Wang et al.,

1986). It is unreasonable to use the same set of rules

to identify a land use type in the whole region. For

example, the same type of crop may have different

backscatter properties under different soil conditions and

terrain features. The variations in environmental settings

may be very complex in real-world situations. How to

define dynamic rules that can adapt to these spatial

variations of backscatter properties within a class

becomes extremely difficult. It is also not easy for users

to comprehend and use such types of systems because of

the complexity.

Case-based reasoning (CBR) has more appealing features

than the traditional rule-based approaches under such sit-

uations. It is developed to overcome the problems of rule-

based systems. However, it still has the advantages inherited

from KBS, such as artificial intelligence, reduction of

repetitive tasks, and highly automated capability. Studies

have also shown that the CBR method can even provide a

much better accuracy of classification than traditional sta-

tistical methods (Watson, 1997). CBR can be traced back to

the work of Roger Schank and his students at Yale Univer-

sity in the early 1980s.

Cases are the basic units in a CBR system. A case is a

contextualized piece of knowledge representing an experi-

ence that can help a reasoner to achieve his goals (Kolodner,

1993). The fast development of CBR is attributed to its

capabilities of resolving some of the problems in knowledge

acquisition and maintenance in rule-based KBS. It doesn’t

require users to elicit rules from training data and thus save

much of the time in reasoning process. In a case library,
each case is represented by a description of the problem,

plus a solution and/or the outcome. The knowledge for

solving a problem is not recorded, but is implicit among the

cases. Similar cases will be matched and retrieved from the

case library to solve a current problem. The retrieved cases

are used to suggest a possible solution which can be reused

and tested, or even adapted to a current problem. This can

allow users to formulate solutions quickly, and save much of

the time that is necessary to derive those answers from

scratch. CBR can also allow users to find the solutions in

domains that are not completely understood by them (Wat-

son, 1997). Moreover, CBR can well handle the domains

where problems have many exceptions to rules (Holt &

Benwell, 1999).

In this study, the philosophy of CBR is applied to the

classification of remote sensing data. The data of each pixel

are treated as the attributes of a case. The method can get rid

of some restrictions in conventional classification techni-

ques. It can allow the use of both numeric and nonnumeric

data. Data are not compulsorily required to be in a normal

distribution.

The first step is to establish the case library which is the

fundamental core of a CBR. The library can be built by

collecting data from remote sensing, land use maps and field

investigation. The attributes (features) of an input case

(pixel) may include backscatters and ancillary GIS data.

The information of texture and contexture can also be used

as the inputs.

Fig. 1 shows the details of using CBR to classify remote

sensing data. Each case contains two parts—the description

of the problem (e.g., the brightness of remote sensing

imagery or other ancillary data) and the solution to the

problem (e.g., classified land use types). A case can be

represented as follows:

x ¼ ðx1; x2; . . . ; xN ;CkÞ ð1Þ

where xn is the nth feature related to backscatters or textural

properties of a case (pixel), and Ck is the land use type of the

case.

Given a set of features, the land use type of a case can be

inferred by using the CBR method. Usually, land use types

are represented by the rigid Boolean method—whether it

belongs to a land use type or not. The Boolean method can

be used if a new case can perfectly match an existing case in

the case library. However, it is very difficult to identify two

cases with exactly the same attributes. Therefore, a fuzzy

membership is more suitable for the matching process of the

CBR method.

Fuzzy sets have the potentials in dealing with environ-

mental data more accurately. Heuvelink and Burrough

(1993) indicate that many environmental problems cannot

be realistically modeled using the rigid Boolean classifi-

cation rules. It is found that the Boolean method is

unsatisfactory with poor results. They demonstrate that

continuous classification with fuzzy sets has advantages

because it is less sensitive to the errors in data. The use of
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fuzzy sets can also greatly reduce the error propagation in

general modeling.

By incorporating fuzzy sets to represent the land use type

of a case, Eq. (1) can be revised as follows:

x ¼ ðx1; x2; . . . ; xN ;FðxaC1Þ;FðxaC2Þ; . . . ;FðxaClÞ; . . . ;
FðxaCLÞÞ

ð2Þ

where F(xaCl) is the fuzzy membership that x belongs to

land use type Cl.

The reasoning process of classification is based on the

similarity between the input case and the existing cases in

the case library. The construction of case library is essential

to the successful implementation of the CBR method. The

case library can be built by using land use maps and field

investigation data.

It seems that the method is similar to the training

procedure of supervised classification. However, there are

some major differences between them. Supervised clas-

sification has a number of restrictions and limitations. It

assumes that a group of training pixels can be identified

for each class. There are uncertainties in the selection of

training sites because of the influences from users’

knowledge and preferences. Homogeneous regions are

usually required to define training data for a class.

Signatures, which represent the characteristics of classes,

should be created from statistical analysis. The signature

of each class should be stable in the whole region for

the classification. These assumptions may not be true in

many situations. The method has limitation when there
are obvious spectral variations within a class in the

whole region because of the spatial changes in environ-

mental settings. Moreover, the signatures from supervised

classification are not intended for reusing in the next

classification.

The CBR method has much more flexibility in represent-

ing the spectral or backscatter variations within a class

because of using discrete cases. In CBR method, a class is

represented by a group of cases. Each case is unique with

distinct spectral properties. Within the same class, a case

may be quite different from others. This flexibility of cases

can let the classification adapt to complex real-world sit-

uations. For example, the backscatter of the same type of

crops may have spatial variations corresponding to the

changes in geomorphologic features, irrigation conditions,

and cultivation systems. It is much better and convenient to

use discrete cases to reflect such variations. Moreover, the

CBR method can easily allow nonnumerical data, such as

soil types, terrain features, and land use, to be included in

the classification process.

The classification in CBR is based on similarity assess-

ment. There are many ways to calculate the similarity

between two cases in CBR. One method is based on the

most popular k-Nearest Neighbor (k-NN) algorithm

(Dasarathy, 1991). The similarity between an input case

(x) and an existing case (l) in the case library is calculated

using the following equation:

SIMðl; xÞ ¼ exp �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
k¼1

SAkl

lk � xk

EDk

� �2

vuut
0
@

1
A ð3Þ
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where SAkl is the salience of kth feature of case l in the case

library. lk is the value of kth feature of case l. xk is the value

of kth feature of input case x. EDk is a standard deviation of

kth feature value of all cases in the case-base. The standard

deviation is used to normalize the feature value so that the

features of equal salience have equal weight in the similarity

function.

The land use type of an input case (pixel) can be deter-

mined when the most similar case in the case library is found

according to the similarity assessment. The classification can

be seen as primarily a matching process. In the case library,

the cases are divided into different groups according to their

land use types for easy matching. The cases of the same land

use types are arranged in the same group (Fig. 1).

The next step is to calculate the fuzzy membership

between an input case and a case in the case library. Because

the value of SIM(l,x) falls within the range from 0 to 1, it

can be used to represent the fuzzy membership value. When

two cases are most similar, they should have the largest

membership value of 1.

For land use type Cs, the fuzzy membership between the

input case x and case l in the case library is calculated by:

FCsðxalÞ ¼ SIMCsðl; xÞ ¼ exp �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
k¼1

SAkl

lk � xk

EDk

� �2

vuut
0
@

1
A

ð4Þ

A number of retrieved cases are usually available for

each type of land use. Therefore, an input pixel may have
Fig. 2. The location of
different values of the fuzzy membership for the same type

of land use. The maximum function can be used to obtain

the final fuzzy membership from these different values for

land use type Cs. The fuzzy membership that input case x

belongs to land use type Cs is calculated by:

FðxaCsÞ ¼ MAX
l

ðFCsðxalÞÞ ð5Þ

For different types of land use, an input pixel may have

different values of the membership function. A pixel should

be classified to the type of land use which has the largest

value of the membership function. Finally, the land use type

for an input case is determined according to the following

inference:

FðxaCkÞ ¼ MAXðFðxaCDÞÞZxaCk ð6Þ
3. Test site and data

3.1. Study area

The study area covers most of Panyu, which is in the

central part of the Pearl River Delta, South China (Fig. 2).

Panyu used to be an agricultural county, but it was merged

by Guangzhou, the largest city in s South China in 2000.

The total land area is 1314 km2, the population is 926,542,

and the population growth rate is 1.7% in 2000. It is a

densely populated area.

The topography is rather flat, although there are some

occasional small hills. It is situated in the subtropical region
the study area.
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with the latitude between 22j26V and 23j05V, and the

longitude between 113j14V and 113j42V. The average

temperature is 21.8 jC. The climate is very suitable for

agricultural production, especially for growing rice paddy.

Radar backscatters are affected by soil moisture. The

reuse of rule bases or case libraries for the next classification

should require similar soil moisture conditions. In this study

region, it is possible to acquire the images of similar soil

moisture conditions according to local weather patterns. In

most situations, it is expected that there are similar soil

moisture conditions for the same seasons for different years.

Before economic reform, the region was dominated by

agricultural activities which mainly consist of rice paddy

production under the planned economy. However, diversi-

fied agricultural activities have been witnessed since the

adoption of market economy in 1978. A significant part of

the rice paddy fields has been converted into other types of

land use, such as growing sugar cane and banana for better

income. Land use changes are unprecedented in the Pearl

River Delta because of fast economic development. The

GDP growth rate of Panyu was 11.2% in 2000. The

monitoring of land use changes can provide useful infor-

mation for land use planning and management in the region.

3.2. Data

Radarsat fine-mode (F1) was selected for better resolu-

tion because the sizes of agricultural land in the region are

small. A finer resolution is important for identifying the

detailed land use information. The images have the resolu-

tion of 8.3� 8.4 m and the swath width of 50 km on the

ground. The average incidence angle is within the range of

37–41j. One scene of Radarsat SAR images can cover most

of Panyu. The land use changes in two successive years,

2000 and 2001, were detected from the SAR images. For

each year, a temporal series of three SAR images was

acquired to cover the whole growth circle of the crop

system. The dates for the SAR images are listed in Table

1. The Landsat TM image dated on 4 January 2000 was also

used to obtain the terrain features in the region. Clustering

was applied to this image by using five bands, TM2, TM3,

TM4, TM5 and TM7.

The land use maps for 2000 were used to assist the

construction of the case library. These maps were obtained

from the Land Department of Panyu. They were made by

interpreting air photographs and field checking. There are
Table 1

The dates of SAR images for the study area

Year Dates Orbit

2000 18 April Ascending

29 June Ascending

6 August Ascending

2001 30 April Ascending

22 June Ascending

11 August Ascending
seven broad land use classes in these maps, such as

agricultural land, orchards, forest, built-up areas, transport,

water, and unused lands. Agricultural land is composed of a

number of subclasses such as rice paddy, banana, sugar

cane, and fishpond. Usually, land use maps are not updated

each year in China. Therefore, the land use maps for 2001

are unavailable for the direct verification of the classifica-

tion of 2001 images.

Field investigations were arranged during the same

periods of acquiring these SAR images. The task of the

field investigation was mainly to record the land use types in

the field. It is especially important to collect the field data in

2001 because the land use maps for 2001 are unavailable. In

this situation, field investigation was carried out in the

locations where land use changes were detected from the

classification of SAR images. Three GPS receivers were

used to record the positions of these ground-collected data.
4. The monitoring of cultivation systems using satellite

SAR images

4.1. SAR image processing

There is a need to convert the original digital number

(DN) of the SAR images into the backscatter coefficient. In

many quantitative analyses, the backscatter coefficient can

represent the original signal amplitudes more accurately and

thus provide more plausible results than the original digital

number.

It is important to remove noise on the SAR images

because they are affected by a kind of noise called speckle.

The Frost adaptive filter (Frost et al., 1982) was used to

preserve edges while significantly reducing the noise in

homogenous regions. A 3� 3 filter was applied for the

smoothing. Most of the noise was removed after the filtering

using the Frost algorithm.

These temporal SAR images were rectified to one

another so that they could be overlaid perfectly. First, the

18 April 2000 SAR image was registered to the survey maps

by using control points. After the geometric correction, the

coordinates of the image were transformed into the Chinese

Coordinate System (C80) from the map. Then, all of the rest

images were rectified to this image by using control points.

Around 50 control points were selected on each image to

carry out the polynomial transformation. The criterion for

selecting these control points is based on easy identification

such as using the intersections of roads and the corners of

fishpond. These control points were evenly distributed over

the whole region to ensure accurate registration. DEM was

not used for the rectification because the topography is

rather even in the delta.

Textural features have been frequently used to improve

the classification of SAR images (Baghdadi et al., 2002). The

information can be derived from remote sensing based on a

variety of methods, such as concurrence, variance and
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entropy. In this study, a textural feature was also used as one

of the attributes for a case. The operator of variance (2nd

order) in the ERDAS software was used to create the textural

image. The operator computed the standard deviation using a

moving window. The textural feature was derived from the

18 April 2000 SAR image. It is found that the incorporation

of this textural feature can effectively discriminate fishponds

from other water bodies. It is because fishponds usually have

the textural feature of periodic alignment. The experiments

show that the best results can be obtained if the textural

feature is derived by using an 11�11 window to calculate

the variance. The textural feature is also useful for achieving

better detection of urban features.

4.2. Construction of case library

Eight types of land use were identified in the region

including banana, sugar cane, grass, rice paddy, lotus,

fishpond, water, and built-up areas. A reason to choose

them is that they are the major types of land use in the

region. Their separability in multitemporal SAR images is

also another reason. Most of these land use types are related

to agricultural activities which should be discerned for

monitoring the cultivation system.

The backscatter of SAR images reflects crop growth

conditions and moisture content of the field. Each type of

land use, especially crops, is characterized with unique

temporal backscatter behavior which has been confirmed

by many studies (Rosenqvist, 1999; Tso & Mather, 1999).

For example, rice paddy fields have unique backscatter

curves over the growth circle. In the planting stage of rice

paddy, the water surfaces in inundated fields result in very

low backscatter values, from � 14 to � 18 dB. The back-

scatter values increase and reach � 5 to � 7 dB in the

reproduction stage. The rice paddy fields are inundated again

for next planting after harvesting. The unique backscatter
Fig. 3. Temporal backscatter behavior of the typi
behavior can allow rice paddy fields to be discerned easily

from other crops. Rice paddy fields can be accurately

detected according to the unique backscatter behavior in the

growth circle. The use of temporal images is important for the

identification of crops or other land use types from SAR data.

The case library was built using land use maps from year

2000.A total of 900 caseswere collected and stored in the case

library for the CBR classification and validation. Each case

contains five features—the backscatters of the three SAR

images (18 April 2000, 29 June 2000, and 16 August 2000),

the textural information and the associated land use types.

It is important to collect the cases over different terrain

features to include the possible backscatter variations within

each land use type. This can allow different backscatter

behavior to be captured by the cases. Stratified random

sampling (Congalton, 1991) was employed to ensure that

the cases of a class were properly allocated over different

terrain features. This method is to use discrete cases to

represent the backscatter variations instead of using com-

plex mathematical equations.

The stratified sampling was arranged according to the

terrain features to capture environmental variations as much

as possible. The terrain classes were obtained by applying a

clustering algorithm to the satellite TM image in 2000. The

clustering provided the basis for the stratified random

sampling that decides the coordinates of cases. As the result,

the collected cases should be the most suitable representa-

tives to various land use types and can be used as the

backscatter signature for the classification. The cases do

not include the total set of previously classified pixels, but

only use some of them based on the sampling techniques for

the matching.

Fig. 3 shows the temporal backscatters of the major land

use types in the Pearl River Delta. The backscatters were

calculated from the 18 April 2000, 29 June 2000 and 16

August 2000 RADARSAT images. The associated land use
cal land use types in the Pearl River Delta.
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types were confirmed from land use maps. The signatures

for land use types were created by using the 450 cases in the

case library. One standard deviation was also shown at each

data point for these land use types. It is obvious that most of

these land use types can be separated from each other based

on the backscatters.

It is not easy to separate banana from sugar cane

according to the mean values and standard deviations. It is

because the statistics will ‘average’ the characteristics of

these cases and thus reduce the separability. It cannot reflect

the internal backscatter variations within each land use

class. Soil moisture and terrain features all contribute to

the internal variations. In reality, the class membership

function is quite complex. The Gaussian membership func-

tion assumed by maximum likelihood has drawbacks in

representing discrete cases. The use of discrete cases can

solve this problem and produce higher classification accu-

racy than the traditional methods.
5. Monitoring of cultivation systems

The backscatters of the three SAR images and the

textural information were used as the main attributes for
Fig. 4. Monitoring the changes in the cultivation system in the Pearl River D
the CBR classification. The salience (SAkl) of each feature

in Eq. (3) was assigned with the same value of 1 because no

preference was given to any of them. Land use was

classified according to the similarity between the input case

and the cases in the case library using these attributes.

The 900 cases in the library were equally divided into

two groups—one for classification and the other for

validation. The first group of 450 cases in the case

library was used for the classification of the 2000 SAR

image. Fig. 4A is the land use classification of Panyu by

applying the CBR method to the temporal Radarsat

images in 2000.

The accuracy of the classification was examined by using

the remaining 450 cases in the case library. The confusion

matrix is shown in Table 2. The overall classification

accuracy is 0.85 and the Kappa coefficient is 0.83. Much

higher accuracy can be found for the detection of rice paddy.

The accuracy is as high as 0.92 for rice paddy detection

alone. This indicates that rice paddy can be more accurately

detected according to its temporal backscatter behavior.

Temporal SAR images provide a unique opportunity for

mapping agricultural land use types, which are difficult to

obtain for optical remote sensing in tropical and subtropical

regions.
elta from multitemporal satellite SAR images using the CBR method.



Table 2

Confusion matrix of the CBR classification

Reference Total Producer’s accuracy

Ba. Su. Gr. Ri. Lo. Fi. Wa. Bu.

Classified Ba. 52 11 3 0 0 0 0 0 66 0.79

Su. 6 58 6 0 0 0 0 4 74 0.78

Gr. 6 6 87 0 0 0 0 9 108 0.81

Ri. 0 0 0 35 2 0 0 0 37 0.95

Lo. 0 0 0 3 21 0 0 0 24 0.88

Fi. 0 0 0 0 0 24 3 0 27 0.89

Wa. 0 0 0 0 3 5 58 0 66 0.88

Bu. 0 0 0 0 0 0 0 48 48 1.00

Total 64 75 96 38 26 29 61 61 450 0.87

User’s accuracy 0.81 0.77 0.91 0.92 0.81 0.83 0.95 0.79 0.85

Banana (Ba.), Sugar cane (Su.), Grass (Gr.), Rice paddy (Ri.), Lotus (Lo.), Fishpond (Fi.), Water (Wa.), Built-up (Bu.).

Overall accuracy = 0.85, Kappa coefficient = 0.83.
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A comparison was made by using a standard classifica-

tion method, the supervised maximum likelihood classifier,

for the classification of the same SAR images. The same

450 cases were used as the training data for the classifica-

tion. According to the same accuracy assessment, the result

is very unsatisfactory with a much lower accuracy of

classification (Table 3). The overall accuracy is 0.75 and

the kappa coefficient is 0.71. This indicates that the accu-

racy of the supervised classification method is significantly

lower than that of the CBR method. The poorer classifica-

tion from the supervised method may be caused by the

obvious spatial variations of environmental settings (e.g.,

roughness and soil types). The agricultural field is usually

small and the mixture of agricultural activities is common in

this region. The variations have caused the difficulties in

creating backscatter signatures for standard classification

methods. It was not easy to define proper training sites for

extracting signatures because of the complexity of environ-

mental settings. The statistics based on means and standard

deviations will generate ‘average’ effects, which cannot help

to separate land use classes. However, the discrete cases in

the CBR method should be most suitable for representing

these complexities and help to obtain much better classifi-

cation performance.
Table 3

Confusion matrix of the supervised maximum likelihood classification

Reference

Ba. Su. Gr. Ri. Lo.

Classified Ba. 42 10 3 3 0

Su. 9 52 18 0 0

Gr. 6 10 84 0 0

Ri. 0 0 0 27 3

Lo. 0 0 0 6 18

Fi. 0 0 0 0 0

Wa. 0 0 0 0 4

Bu. 0 0 0 0 0

Total 57 72 105 36 25

User’s accuracy 0.74 0.72 0.80 0.75 0.72

Banana (Ba.), Sugar cane (Su.), Grass (Gr.), Rice paddy (Ri.), Lotus (Lo.), Fishp

Overall accuracy = 0.75, Kappa coefficient = 0.71.
One of the advantages for CBR methods is that case

libraries are reusable for time-independent classification.

However, the SAR images in different years must be

acquired in similar times of the crop growth cycles. In this

study, the same case library developed for the classification

of the 2000 SAR images was reused for the classification of

the 2001 SAR images. It is expected that same case library

is still valid because the 2001 SAR images cover almost the

same crop growth circle. This can save much the time in the

classification. Fig. 4B is the classification of land use types

by applying the same case library to the 2001 SAR images.

The accuracy for classifying the 2001 SAR images was

examined based on two steps. First, the changes in the land

use types were identified by overlaying the 2000 and 2001

classified SAR images. Because these updated land use

types were not stored in the validation group of the case

library, field work using GPS was carried out to obtain the

information for the validation. The remaining unchanged

land use types were still verified by using the validation

group of the case library. One hundred fifty changed pixels

were visited, and 300 unchanged pixels were retrieved from

the case library for the accuracy assessment. The overall

classification accuracy is 0.83 according to this method. The

experiment indicates that the case library can be used for
Total Producer’s accuracy

Fi. Wa. Bu.

0 0 0 58 0.72

6 0 12 97 0.54

0 0 9 109 0.77

0 0 0 30 0.90

0 0 0 24 0.75

10 7 0 17 0.59

6 63 0 89 0.71

0 0 42 42 1.00

22 70 63 450 0.75

0.45 0.90 0.67 0.72

ond (Fi.), Water (Wa.), Built-up (Bu.).



Table 4

The changes for each land use category in 2000–2001 from the CBR

method (in ha)

Land use categories 2000 2001 Increase

by (%)

Banana 14,008 15,532 10.9

Sugar cane 32,566 38,301 17.6

Grass 23,859 19,282 � 19.2

Rice paddy 13,968 10,615 � 24.0

Lotus 6403 8414 31.4

Fishpond 5395 5885 9.1

Water 36,963 34,949 � 5.4

Built-up 3075 3260 6.0
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time-independent classification of land use types from SAR

images.

The monitoring of the changes in the cultivation system

is convenient by the overlay of the two classified SAR

images. Table 4 is the changes of each land use category in

2000–2001. The analysis indicates that agricultural land is

rapidly declining. The study area witnessed a drop of 24.0%

of the rice paddy field and an increase of 6.0% of the urban

areas in the period of 2000–2001. However, the areas for

growing banana and sugar cane increased by 10.9% and

17.6%, respectively, at the same period. The area for

fishpond also rose by 9.1%. It is because banana, sugar

cane and fishpond can produce much higher income than

rice paddy production. Local farmers are not interested in

rice paddy production. Thus, significant land use changes

have taken place in the crop system. Multitemporal SAR

images provide an opportunity for monitoring the internal

restructuring of agricultural activities in the study area.

The rapid decrease of agricultural land can be easily

confirmed by field investigation. In the Pearl River Delta,

rice paddy used to be the dominant crop before economic

reform, but now it is very difficult to find a piece of rice

paddy fields in many places in the delta. According to the

statistical yearbooks of Guangdong, the cropland decreased

by 24.3% for the whole Pearl River Delta in 1990–2000.
6. Conclusion

The classification of remote sensing data can provide

valuable land use information for land use planning and

management. It can also provide important inputs to many

environmental models for estimating the impacts of land use

changes. However, conventional optical remote sensing has

limitations for monitoring the cultivation systems in tropical

and subtropical regions because of frequent cloud covers.

This study demonstrates that multitemporal SAR images are

able to monitor the rapid changes in the cultivation system

in the Pearl River Delta, South China.

Classification is a common task of image processing in

remote sensing applications. Numerous methods, such as

contextual classifiers and rule-based systems, have been

developed to improve the classification accuracy. There
are increasing studies on using KBS to classify SAR

imagery because SAR imagery can provide stable spectral

properties. This study explores the possibility of using case-

based reasoning (CBR) techniques to simplify the classifi-

cation procedures of KBS.

Although rule-based systems have a number of advan-

tages for remote sensing classification, they have limitations

in dealing with complex situations. A large set of rules is

usually required to cope with the complex situations. The

jobs to define these rules are quite time-consuming because

complicated and changing environmental settings can make

the formation of rules very difficult. It is a bottleneck to

acquire knowledge and define concrete rules. There are

uncertainties on how to determine rule structures and

parameter values such as thresholds.

This study indicates that the CBR method is very

promising for the classification of SAR imagery. The

method can avoid some of the problems, such as knowledge

elicitation bottlenecks, in building KBS. Fuzzy sets have

also been incorporated in the model to represent the match-

ing of land use types more precisely. For a new case, it is

unlikely to retrieve exactly the same case based on the

similarity assessment. Fuzzy sets can reduce the uncertain-

ties effectively in case matching. Fuzzy membership func-

tions are used to deal with the vagueness of state (e.g., land

use types). They can represent gradual class boundaries and

overcome the limitations of the rigid Boolean model.

The experiment indicates that the CBR method works

better than traditional methods such as the maximum likeli-

hood classifier. Traditional classification usually assumes

that a specific type of land use should maintain a stable

spectral signature over the whole study area. It is not true for

a large region in which the changes of terrain features (soil

moisture and roughness) may lead to the variations in the

spectral signature for this land use type. The variations may

be very complicated under real-world situations.

It is very difficult to find out the relationships between

the spectral properties and environmental background. For

example, the maximum likelihood method assumes that the

class membership function is Gaussian. Rule-based systems

also need to define the threshold values and the boundary of

changes. All these assumptions may not be true in reality.

The use of discrete cases can conveniently solve this

problem. The dynamic spectral variations of a class can be

captured by properly allocating cases over various terrain

features with a stratified sampling technique.

The case library in the CBR method is reusable for time-

independent classification. Experiments indicate that satis-

factory results can be generated by using the same case

library for classifying SAR images in different years. The

classification results from the CBR method are found to be

largely consistent with actual land use patterns as obtained

from land use maps and field investigation. However, the

reusability of case library requires that the SAR images in

different years should be acquired during the same time of

the crop growth cycles. Moreover, the soil moisture should
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be stable for the same time in different years. These

assumptions are also required for any other KBS methods.

The region has witnessed an astonishing rate of land use

conversion. The cultivation system is undergoing rapid

changes due to the introduction of market economy. The

traditional rice paddy production is under threat because it is

being replaced by other agricultural activities for higher

income. Rice paddy fields may probably disappear in the

delta in the near future if the governments do not intervene

such changes soon. Local governments should implement

measures of promoting sustainable land development in the

region. The loss of rice paddy fields will have significant

ecological consequences and other environmental impacts.

Further studies can be carried out to assess the impacts of

land use changes in the region.
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