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Abstract. This paper presents a new method to simulate the evolution of multiple
land uses based on the integration of neural networks and cellular automata
using GIS. Simulation of multiple land use changes using cellular automata (CA)
is diYcult because numerous spatial variables and parameters have to be utilized.
Conventional CA models have problems in de� ning simulation parameter values,
transition rules and model structures. In this paper, a three-layer neural network
with multiple output neurons is designed to calculate conversion probabilities for
competing multiple land uses. The model involves iterative looping of the neural
network to simulate gradual land use conversion processes. Spatial variables are
not deterministic because they are dynamically updated at the end of each loop.
A GIS is used to obtain site attributes and training data, and to provide spatial
functions for constructing the neural network. The parameter values for modelling
are automatically generated by the training procedure of neural networks. The
model has been successfully applied to the simulation of multiple land use changes
in a fast growing area in southern China.

1. Introduction
There are numerous studies on the detection of land use change using remote

sensing and GIS (Howarth 1986, Jensen et al. 1995, Li and Yeh, 1998). However,
there is a general lack of studies on the simulation of land use changes because of
their complexities. It is possible to project future land use patterns using empirical
data. The generic paths of change can be identi� ed, such as the typical sequences of
land use changes found across tropical regions (Lambin, 1997). Most economic
modelling on land use changes originates from land rent theories of von Thünen
and Ricardo (Mertens and Lambin, 2000). Any parcel of land, given its attributes,
is assumed to be allocated to the use that earns the highest pro� t. Land uses compete
against each other in biding for a favourable location. Multivariate spatial models
can be developed to predict possible land use conversions (Mertens and Lambin,
2000). Another example of predicting land use changes is based on the Markov
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analysis (Hathout, 1988). However, this method only produces the prediction of
land use categories without spatial details.

Recently, there are increasing studies on simulating urban growth using cellular
automata (CA) techniques (White and Engelen, 1993, Batty and Xie 1994, Wu, 1998).
The application of CA in urban modelling can give insights into a wide variety of
urban phenomena. Urban CA models have better performance in simulating urban
growth than conventional urban models because they are much simpler than complex
mathematical equations, but produce results that are more meaningful and useful
with intuitive results (Deadman et al. 1993, White and Engelen 1993, Wu 1998).
Temporal and spatial complexities of urban systems can be well modelled by properly
de� ning transition rules in CA models. CA simulation provides important informa-
tion for understanding urban theories, such as the evolution of forms and structures.

Simulation of land use changes is important for a variety of planning and
management issues as well as for academic research. It can provide the baseline
growth scenario to show the future land development pattern when the current land
development process continues into the future. The baseline growth can be used to
identify future urban development problems. It can also be used to compare with
the improvements that could be made by diVerent urban development plans and
policies. Such simulation provides useful information about locations, types, scale,
amount and density of land conversion that will probably take place. The simulation
of land use changes can help to assess development impacts, prepare land use plans,
and seek optimal land use patterns. It can forecast the consequences of speci� c
human behaviour and land use policies. It can also identify the possibility of severe
land use problems, such as the encroachment on important environmental areas,
including croplands and wetlands. Strict land use zoning may be required to prevent
the potential land use problems identi� ed by the simulation. The simulation of land
use changes will enable rural and urban planners to provide the public with necessary
facilities and services to sustain the development (Hathout 1998).

The simulation of multiple land use changes using CA is much more diYcult
than the simulation of urban growth which is normally done on a binary basis, i.e.
land is either assigned or not assigned for urban development. When multiple land
uses are presented, the transition rules of urban CA models become substantially
more complicated because the simulation involves the use of a much larger set of
spatial variables and parameters and more complex model structures. In this paper,
a neural-network-based CA model is developed to simulate multiple land use changes.
The integration of a neural network with the cellular automata should be a much
better approach to simulation of complex land use systems because neural networks
are very good at coping with wrong and poor data and capturing non-linear complex
features in modelling processes.

2. Urban CA models and calibrations
In general GIS modelling, land use changes are predicted according to the

independent spatial variables that are generated from standard GIS analysis tools
(Mertens and Lambin 2000). These independent variables are usually deterministic
and unchanged during the modelling process. An example is the California Urban
Futures (CUF) model that is speci� ed for metropolitan growth simulation (Landis
1995). The revised CUF model includes multiple land uses for more realistic GIS
modelling (Landis and Zhang 1998). Land use changes are considered as a path-
dependent and discrete approach. Land use changes are estimated by using a
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multinomial logit procedure in the revised CUF model. GIS modelling can also be
used to simulate idealized growth patterns by applying various types of constraints
(Yeh and Li 1998).

Another type of approach for modelling cities and land use is based on cellular
automata (CA) techniques. CA models are bottom-up approaches as local (neigh-
bourhood) interactions give rise to the formation of complex global patterns. CA
models have become very attractive to urban simulation because they can generate
interesting results. They provide a useful tool to understand cities that are regarded
as evolutionary and complex systems. In a self-organizing city, land development is
a historically dependent process in which development in the past aVects the future
through local interactions among land parcels (Wu and Webster 1998). In CA
simulation, the outcome at the previous iteration has important eVects on the
outcome at the next iteration. Complex global patterns can be formed after many
iterations of a simulation. Some unexpected features can even emerge during the
simulation by properly de� ning transition rules (Wu 1998).

CA models have better modelling capability than general GIS in the simulation
of urban growth and land use changes. Spatial variables in CA models are dynamic-
ally updated during iterative looping so that the results are not deterministic. Some
realistic and new features can emerge during the processes of simulation, e.g. forma-
tion of new aggregate centres (Wu 1998) and fractal properties (White and Engelen
1993). Complex global patterns can emerge from local interactions during CA
simulation (Batty and Xie 1994). In contrast, general GIS models have diYculties
in simulating complex urban dynamics without using local rules and iterative looping.
and they usually use static spatial variables in the simulation. It is also hard to
capture non-linear features that are presented in many geographical phenomena. It
is not easy to explain the theoretical and intuitive meaning when the urban simulation
is purely based on GIS modelling. The algorithms of GIS modelling are also much
more complicated and the simulation time is much longer than with CA.

Although CA have many advantages , a major problem is how to determine their
parameter values. In the past, CA models mainly concentrated on the simulation of
urban growth from rural to urban land use. It is relatively easy to simulate urban
growth which only deals with the binary state—urbanized or not. CA models become
considerably more complex when there are multiple land use types, such as vacant,
residential, commercial, housing and transportation land uses (Batty et al. 1999 ).
When dealing with competing multiple land uses, the number of factor weights
substantially increases and the structure of CA models becomes more complicated.
There are numerous parameters which need to be determined to re� ect a particular
urban system being simulated and the range of possible model types is enormous
(Batty et al. 1999 ).

The simulation of multiple land use changes involves the use of numerous spatial
variables. The contribution of each spatial variable to the simulation is quanti� ed
by its associated weight or parameter. There are thus numerous parameters to be
de� ned before the simulation can be executed. Parameter values have great eVects
on the results of simulation. DiVerent combinations of parameter values will lead to
a totally diVerent urban form (Batty et al. 1999, Yeh and Li 2001).

In most situations, calibration of CA models is needed to ensure that the simula-
tion can generate the results close to the reality. The calibration is extremely diYcult
when the conversion takes place among multiple land use types. There are two major
types of calibration methods for CA simulation. One type is based on statistical
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methods. For example, logistic regression can be used to calibrate CA models to
obtain parameter values for urban simulation (Wu 1998). This type of models is
only concerned with the binary conversion of land uses—urbanized or not. General
statistical methods may have some limitations when spatial factors and model
structures are too complicated. They are invalid when spatial factors correlate with
each other. They also have diYculties in handling poor and noisy data.

Another type of calibration is based on trial and error approaches. No strict
mathematical methods are required for such calibration. A simple method is to
compare the simulation results visually using various combinations of parameter
values (Clarke et al. 1997, Ward et al. 2000). The ‘best’ set of parameter values is
determined from a visual comparison. However, it is diYcult to de� ne the combina-
tions when there are many variables, and to assess the results visually because the
patterns are usually very complex. White et al. (1997) also propose an intuitive
method by means of a trial and error approach to obtain a parameter matrix for
urban simulation. Their models have used as many as 21 Ö 18 5 378 parameters for
simulating competing urban land uses. The method is not based on strict mathemat-
ical methods and � ne-tuning the calibration to get the matrix might take too much
time. Clarke and Gaydos (1998) develop a relatively robust method for calibrating
CA models based on computer comparison. It calculates the � ts between the observed
historical data and various simulation results. The suitable set of parameter values
is found based on the ‘best’ outcome of the various trials. The calibration is very
computation-intensiv e although it seems to be sound in the search algorithms. The
calibration needs a high-end workstation to run hundreds of hours before � nding
the ‘best’ outcome.

Another problem with CA models is how to de� ne transition rules and model
structures. Transition rules and model structures are usually application-dependent .
Although some CA models have been argued to be generic in nature (White et al.
1997, Wu 1998, Batty et al. 1999), these models are substantially diVerent in their
forms. The variations are due to the existence of many possible ways of de� ning the
transition rules and model structures. For example, Batty and Xie (1994) use nested
neighbourhood space and a distance decay function from the seed of development
to determine transition probability. Wu and Webster (1998) de� ne transition rules
based on multicriteria evaluation (MCE) methods. A prede� ned parameter matrix
can be used to control development probability instead (White and Engelen 1993).
Li and Yeh (2000) propose a grey-cell-based model to accommodate gradual urban
conversion process. A series of constraints can be used to de� ne transition rules for
generating idealized urban forms (White et al. 1997, Li and Yeh 2000). Planning
objectives and options can be embedded in CA models to produce alternative plans
(Yeh and Li, 2001). CA models can also accommodate neo-classical urban theory
by properly de� ning transition rules (Wu and Webster 2000). In these models,
substantially diVerent forms of CA models in terms of transition rules and model
structures have been proposed to satisfy various objectives and speci� cations. There
is a dilemma in how to choose a suitable CA model because too many choices are
presented.

3. Neural-network-based CA model for simulating multiple land use changes
This paper presents the results of an experiment on simulating land use dynamics

by using neural networks. The simulation has to deal with the complex relationships
of land use conversion (� gure 1). For a total of N land use classes, there can be
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Figure 1. Complex relationships of land use conversion.

N Ö N types of possible conversions. Neural networks seem to be most suitable for
the simulation of the complex relationships.

Arti� cial neural networks (ANNs) consist of layers and neurons which simulate
the structure of human brains. The layers and neurons allow ANNs to have the
learning and recall abilities like human, especially for non-linear mapping. ANNs
can be well trained by using back-propagation learning algorithms. ANNs have been
quite successfully employed to the analysis and modelling problems of geography
(Openshaw and Openshaw 1997, Openshaw 1998). It is generally accepted that
neural networks can achieve results of greater accuracy in modelling (Wang 1994,
Zhou and Civco 1996).

The proposed ANN-CA model is devised using multiple output neurons for
simulating multiple land use changes. The output layer of the network determines
the transition probabilities of multiple land uses by using multiple output neurons.
The parameters that are required for the simulation are automatically determined
by a training procedure of neural networks. No explicit transition rules are required
in the ANN-CA model. The only task is to train the neural network to obtain
parameter values based on empirical data.

The structure of the ANN-CA model is very simple and virtually unchanged
because it is using neural networks. The model can deal with the complex relation-
ships among variables because ANNs have excellent non-linear mapping abilities.
The integration is especially useful when there are many parameters to de� ne in the
simulation of complex systems, e.g. multiple land uses.

Traditionally, a neural network can be used to classify a set of observations, X 5
[x1 , x2 , x3 , ..., xn]T which is of n diVerent variables. The architecture of a simple
three-layer neural network with multiple output neurons is shown in � gure 2. A
neural network consists of one input layer, one output layer, and no or some hidden
layers between them. Neurons or nodes which are the basic units to process signals
are arranged in layers. In the � rst (input) layer, each neuron accepts a single value
which corresponds to an element in X. Then each neuron generates an output value
and the output value may be used as the input for all the neurons in the next layer.
Weights are used to address the strengths of network interconnection between
associated neurons.

The algorithms to quantify the above signal collection and activation processes
are quite simple. For neuron j in the receiver layer, the net input from the collection
process is calculated by:

net
j
5 �

i

w
i,j

I
i

(1)
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Figure 2. Basic structure of an arti� cial neural network with multiple output neurons.

where I
i

is the signal from neuron i of the sender layer, net
j

is the collection signal
for receiver neuron j , and w

i,j
is the parameter or weight to sum the signals from

diVerent input neurons.
The receiver neuron creates activation in response to the signal net

j
. The

activation is usually created in the form of sigmoid function:

1

1 1 e Õ netj
(2)

The activation becomes the inputs to the next layer. Equations (1) and (2) can
be used to process the signals again. The collection and activation processes continue
until the � nal signals are obtained by the output layer.

A neural network can be used for pattern recognition or classi� cation. Each
neuron in the output layer is associated with a class. When a case is presented to
the network, each output neuron will generate a value that indicates the similarity
between the input case and the corresponding class. An input case can be classi� ed
into the class that is associated with the neuron of the highest activation level.

The determination of weights is critical to successful applications of neural
networks. A set of training data has to be used to obtain the optimal weights based
on a back-propagation learning algorithm. The algorithm is quite robust because it
iteratively minimizes an error function over the network outputs and desired outputs
based on a training data set (Rumelhart et al. 1986, Foody 1996). When the set of
weights has been obtained, the network is ready for classi� cation or prediction.

The simulation of multiple land use changes needs to deal with numerous complex
spatial variables. These variables may correlate with each other and the relationships
between them are quite complex. Traditional CA methods have diYculties in handling
complex variables and determining parameter values. A neural-network-based CA
model seems to be most suitable for the simulation of multiple land uses. The
� owchart of the proposed model is presented in � gure 3. The model is divided into



Simulating multiple land use changes using GIS 329

two parts—training and simulation. The network structure remains the same for the
two parts.

The � rst step is to de� ne the inputs to the network for the simulation. The
simulation is cell-based and each cell has a set of n attributes (variables) as the inputs
to the neural network. It is assumed that these site attributes decide land use
conversion probabilities. These variables can be conveniently obtained by using
general GIS buVer and overlay analyses. They can be expressed by:

X 5 [x1 , x2 , x3 , ..., x
n
]T (3)

where x
i

is the ith site attribute and T is transposition.
Each variable is associated with a neuron in the input layer. It is more appropriate

to convert input data into the range of [0,1] for neural networks (Gong 1996). The
transformation may be similar to data normalization by using the minimum and
maximum values in scaling the original data set. Scaling each variable treats them
as equally important inputs to neural networks and makes them compatible
with the sigmoid activation function that produces a value between 0 and 1. The
transformation is carried out by:

x ¾
i
5 (x

i
Õ minimum)/(maximum Õ minimum) (4)

The architecture of the neural network should be designed as simply as possible
because the simulation is of many loops. The proposed neural network only has
three layers—the input layer, a hidden layer and the output layer for simplicity. The
input layer receives the scaled attributes, x ¾

i
. Studies indicate that the network with

one or more hidden layers can approximate any continuous function, given suYcient
hidden neurons (Zhou and Civco 1996). Sometimes diYcult learning tasks can be
simpli� ed by increasing the number of hidden layers, but a three-layer network can
form any decision boundaries (Gong 1996).

In the hidden layer, the signal received by neuron j from the input layer for cell
k at time t is calculated by:

net
j
(k, t) 5 �

i

w
i,j

x ¾
i
(k, t ) (5)

where net
j
(k, t) is the signal received by neuron j in the hidden layer, w

i,j
is the

parameter or weight between the input layer and the hidden layer, and x ¾
i
(x, t ) is the

ith scaled site attribute associated with neuron i in the input layer with regard to
cell k and time t.

The activation of the hidden layer to the input signal is calculated by:

1

11 e Õ netj (k, t)
(6)

The output layer has a total of N neurons corresponding to N classes of land
uses. The lth neuron in the output layer generates a value that represents the
conversion probability from the existing type to the lth (target) type of land use. A
higher value means that the conversion probability from the existing type to the lth
type of land use is greater. Conversion probabilities are calculated by the following
formula according to the output function of neural networks:

P(k, t, l ) 5 �
j

w
j,l

1

1 1 e Õ netj (k, t)
(7)
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where P(k, t, l ) is the conversion probability from the existing to the lth type of land
use for cell k at time t, and w

j,l
is the parameter or weight between the hidden layer

and the output layer.
A stochastic disturbance term is usually incorporated in CA simulation to gener-

ate more plausible results (White and Engelen 1993). The disturbance can lead the
simulation to produce fractal properties that are found in real urban systems and
land use patterns. The error term (RA) can be de� ned as (White and Engelen 1993):

RA 5 1 1 (Õ ln c)a (8)

where c is a uniform random variable within the range of 0 to 1, and a is the
parameter to control the size of the stochastic perturbation. a can be used as a
dispersion factor in the simulation.

The disturbance is incorporated in the neural-network-based CA model for more
realistic simulation. The conversion probability is then revised as:

P(k, t, l ) 5 RA Ö �
j

w
j,l

1

11 e Õ netj (k, t)

5 (11 (Õ ln c)a ) Ö �
j

w
j,l

1

1 1 e Õ netj (k, t)
(9)

A loop-based neural network is designed to simulate land uses. At each iteration,
each neuron in the output layer generates a conversion probability from existing
type to another type of land use. DiVerent types of land uses compete against each
other for a given cell (e.g. more than two types of land uses can be suitable for a cell
simultaneously according to the suitability). The competition can be better explained
by a neo-classical bid-rent model (Webster and Wu 1999). In our simulation, land
use conversion is decided by comparing the values of conversion probabilities. Land
use will convert from the existing type to the type that is associated with the highest
value of conversion probability. If the same type of land use has the highest conver-
sion probability, the state of the cell remains unchanged. The simulation of land uses
is carried out by running the neural network iteratively until some constraints are
satis� ed, e.g. the total amount of available land for urban uses.

In most situations, land use changes take place only by a small percentage within
a short period. CA simulation usually involves many iterations to decide whether a
cell is converted or not. A prede� ned threshold value should be used to control the
rate of conversion so that land use changes take place step-by-step. If the highest
conversion probability is less than the threshold value, the cell remains unchanged.
The threshold value may range from 0 to 1. Experiments show that a relatively large
value of threshold (e.g. 0.90) can be used to prevent land use from changing too fast
in the simulation. The smaller the value, the more cells will be converted at each
iteration. A relatively large value of threshold (e.g. 0.90) is useful for obtaining the
� ne patterns of simulation.

4. Implementation and simulation results
4.1. Monitoring land use changes from remote sensing

The proposed ANN-CA model was tested by applying it to the simulation of
multiple land use changes in a real city, Dongguan, in the Pear River Delta in
southern China. The study region consists of a city proper and 29 towns with a total
area of 2465 km2 . It was mainly an agricultural area. Tremendous land use changes
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have occurred in the 1990s due to the fast economic development (Li and Yeh 1998).
An urban planning CA model was developed to generate urban growth pattern that
could minimize agricultural land loss and achieve compact development (Li and Yeh
2000). Like most urban CA models, it only dealt with the conversion between the
binary states–urbanized or not. In order to predict what will happen if the current
urban development pattern continues, there is a need to develop a CA model that
can simulate future urban growth. More ideally, the model should be able to provide
detailed information about the conversion between multiple land uses for planning
and management purposes. In this study, the simulation involves six types of land
uses—cropland, orchards, development sites, built-up areas, forest and water.

Empirical data should be used to calibrate CA models when the simulation is
for real cities. Empirical data usually include the information of location, type and
amount of land use conversion. This type of information can be conveniently obtained
from satellite images by employing land use change detection methods. There is a
lot of research on land use change detection using satellite images (Howarth 1986,
Jensen et al. 1995). In this study, a method based on principal components analysis
(Li and Yeh 1998) was employed to obtain the information of land use changes for
the study area. The 1988 and 1993 TM images were used as empirical data to reveal
the fast land use conversion in the region.

Table 1 is the land use conversion matrix obtained from these satellite images.
Two major categories of land use changes can be observed—internal agricultural
restructuring and urban encroachment on agricultural land. The table indicates that
a large amount of cropland was converted into orchards due to market mechanism.
The loss of agricultural land is signi� cant because both cropland and orchards were
converted into development sites at a large scale. Some of the existing development
sites � nally became built-up areas. The patterns of land use conversions can be
clearly observed from satellite images. For example, the conversion from agricultural
uses to urban uses is dominant along main transport corridors. Idle land uses
associated with land speculations can be identi� ed in many rural areas from satellite
images. The conversion processes are rather complex in terms of the types, amounts
and locations of land use changes. General linear regression analyses are unsuitable
for revealing the complex relationships because it is hard to capture non-linear
characteristics.

4.2. T he GIS database for site attributes and training data
A GIS database which contains both raster and vector data was built to provide

the basic spatial information for the simulation. It contains the raster information
of historical land use changes that were detected from satellite images and soil types.
It also contains other vector layers of spatial information, such as topography, urban
centres, roads, and administrative boundaries. Standard GIS buVer and overlay
analyses were carried out to retrieve site attributes and training data from the
database. Although the original database contains both vector and raster data, they
need to be converted into a raster format for the simulation. All the data were
converted into a raster format with each cell representing an area of 50 m Ö 50 m on
the ground for the simulation. Like other CA models, this model is also cell-based.
Each cell is represented by a set of site attributes. These attributes are passed through
the network for getting the output values—conversion probabilities. Land use con-
version can be predicted based on site attributes although the relationships may be
quite complex.
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A total of twelve spatial variables were chosen for the simulation of multiple
land use changes. They include various distance-based variables, neighbourhood
functions and physical properties (table 2). Studies have shown that these variables
are closely related to urban development and land use changes (White and Engelen
1993, Wu and Webster 1998, Li and Yeh 2000). They are usually used as independent
variables for urban and land use simulation. However, the simulation will be more
precise when the distances are measured from existing urban areas rather than from
urban centres because growing urban areas will generate more infrastructure and
additional centres to support further urban growth.

Land use conversion is usually dependent on a series of spatial variables in terms
of accessibilities or proximities, e.g. distances to urban centres, town centres and
transportation lines. An example is to simulate urban growth according to a linear
weighted combination of a series of spatial factors, e.g. distances to urban centres
and transportation lines, and the developed quantity in the neighbourhood (Wu and
Webster 1998, Wu 1998). In this study, the Eucdistance function of ARC/INFO GRID
was used to obtain the three distance variables that were used for the simulation.

Neighbourhood functions are central to the CA models. The Focal functions of
ARC/INFO GRID were used to obtain the site attributes of neighbourhood proper-
ties. Besides location variables, land use conversion is also dependent on the amount
of land use types in the neighbourhood. Usually, the presence of a larger amount of

Table 2. Spatial variables for simulating multiple land use changes in the neural network.

Original data Scaled
Spatial variables Creation method range range

1. Distance variables
Distance from the cell to the GIS BuVer Analysis using 0~30 km 0~1
major (city proper) urban the Eucdistance function of
areas (x1 ); ARC/INFO
Distance from the cell to the GRID 0~5 km 0~1
closest sub-urban (town)
areas (x2 );
Distance from the cell to the 0~3 km 0~1
closest road (x3 ).

2. Neighbourhood functions Focal functions in a 7 Ö 7 0~49 pixels 0~1
Amount of cropland (x4 ); window using ARC/INFO 0~49 pixels 0~1
Amount of orchards (x5 ); GRID 0~49 pixels 0~1
Amount of construction sites 0~49 pixels 0~1
(x6 ); 0~49 pixels 0~1
Amount of built-up areas 0~49 pixels 0~1
(x7 );
Amount of forest (x8 );
Amount of water (x9 ).

3. Physical properties TIN Model; Converted into 0~75 ß 0~1
Slope (x10 ); ARC/INFO GRID

0~1
Soil types (x11 ); Conversion from vector to 1~7 categories

raster 0~1
Existing type of land use
(x12 ). Remote sensing classi� cation 1~6 categories

& simulation
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a certain type of land use in the neighbourhood will increase the probability of the
conversion to that type of land use. For example, there is a higher chance for a cell
to be developed if it is surrounded by more developed cells. The relationships may
be more complicated in the case of multiple land uses. However, neural networks
are quite appropriate to deal with the complex relationships.

The physical properties for each cell will also aVect the land use changes. These
properties include soil types, slope and existing type of land use. Soil types and slope
should be important constraints for land use conversion. The existing type of land
use at time t is also an important input for estimating conversion probabilities. These
physical properties were retrieved from the GIS database and converted into the
raster format of ARC/INFO GRID.

The model has a total of twelve input neurons to receive these variables (site
attributes) for each cell at time t. The � rst three neurons are speci� ed to represent
three main types of distance variables. The next six neurons are used to count the
amount of each land use type in the neighbourhood of 7 Ö 7 window. The last three
neurons are assigned to express the physical property of a cell.

Table 2 lists the details of the spatial variables that are used by the model.
Although these original data had diVerent scales, they were normalized into the
range of [0, 1] before inputting to the network according to the equation (4). There
is little concern about correlated variables and data redundancy because neural
networks are good at dealing with these problems.

Unlike general GIS modelling, the distance and neighbourhood variables are
dynamically updated during the simulation. GIS data and functions can be directly
used for the updating because the model was built within a GIS. The updated
attributes are used as the inputs to the neural network at each loop.

4.3. T he architecture of neural network
Various studies have been carried out to test the eVects of neural-network struc-

tures, which are determined by the numbers of layers and neurons, on modelling
performance (Openshaw and Openshaw 1997, Paola and Schowengerdt 1997). It is
considered that there is no universal optimal structure for all applications. The
principle is to use as few layers and neurons as possible. A three-layer neural network
has been commonly used because of its simplicity and eVectiveness. 2–3 hidden
layers may sometimes be useful if the function being modelled is extremely complex,
noisy or discontinuous (Openshaw and Openshaw 1997). Determining the optimal
number of layers is usually a matter of experimentation. A useful approach to the
experiment is to start with one hidden layer and then add a second if the level of
performance is unsatisfactory.

This study used a three-layer neural network for the simulation of multiple land
uses (� gure 3). More layers will signi� cantly prolong the simulation time.
Kolmogorov’s theorem indicates that any continuous function w: Xn � Rc can be
implemented by a three-layer neural network which has n neurons in the input layer,
(2n 1 1) neurons in the single hidden layer, and c nodes in the output layer (Hecht-
Nielsen 1987). In this model, there were twelve neurons in the input layers corres-
ponding to the number of spatial variables (site attributes) . Six neurons were speci� ed
to represent six classes of land uses in the output layer. Each output neuron produces
a conversion probability corresponding to one target type of land use.

There is a need to determine the number of neurons in the hidden layer. According
to Kolmogorov’s theorem, the use of 2n 1 1 hidden neurons can guarantee the perfect
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Figure 3. The � owchart of the neural-network-based CA model for simulating multiple land
use changes.

� t of any continuous functions and reducing the number of neurons may lead to
lesser accuracy. However, experiments indicate that 2n 1 1 hidden neurons may be
too many in applications (Wang 1994). 2n/3 hidden neurons can generate results of
almost similar accuracy but requires much less time to train. In this model, eight
hidden neurons were used in the network to ensure a balance of both accuracy and
simulation speed.

4.4. T raining the network
Training the neural network is essential to the simulation of realistic land use

patterns. The parameters of CA models have to be obtained through calibration
procedures. It is rather convenient to obtain parameter values if they are based on
neural networks. The information of land use changes was obtained by the classi� ca-
tion of remote sensing images. The results of change detection were then overlaid
with the site attributes obtained from GIS analysis. This produced the data set that
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could reveal the relationship between land use conversion probabilities and site
attributes.

Data encoding is carried out to prepare the � nal training data set. Each output
neuron is associated with a target land use. The network will calculate the conversion
probabilities for each target land use based on site attributes. The calculated probabil-
ities are compared with desired values for the training. The desired values are
obtained from historical data. A neuron will be assigned with the desired value of 1
when there was land use conversion for its associated target land use. Otherwise,
the neuron will be assigned with the desired value of 0. The calculated value is
expected to be as close as possible to the desired value by automatically adjusting
the weights in the learning process.

The calculated value is within the range from 0 to 1, which represents the
conversion probability for the target land use. A calculated value closer to 1 indicates
a higher conversion probability to the target land use and vice versa. The learning
process can eVectively let the network estimate conversion probabilities based on a
set of site attributes.

It is unwise to use the whole data set for training because the data volume is
huge. There is still a common problem of spatial autocorrelation for most spatial
variables. Random sampling is a common way to solve these problems. Random
sampling procedure can be improved by using strati� ed sampling (Congalton 1993).
This is better than purely random sampling which may leave out some smaller
categories. Proportional strati� ed sampling was used in the study. A total of 3000
samples were proportionally randomly selected from diVerent land use types. Only
50% of the total samples were used as the training data set and the rest were treated
as the test data set to verify the training results.

The parameter values were automatically determined by a learning process which
was based on the back-propagation algorithm (Rumelhart et al. 1986, Foody 1996).
The algorithm iteratively minimized an error function over the network (calculated)
outputs and desired outputs based on the training data set. The training process
was carried out outside the simulation model by using a neural network package,
T HINKS PRO. The package contains sophisticated algorithms and convenient
interfaces for eVective training and visualization. During the training, the prediction
error decreased steadily at the beginning (� gure 4). However, the decrease became
minor soon and insigni� cant after many iterations. In this study, the training process
was terminated at 1000. These parameter values were then imported to the model
for further simulation.

4.5. Simulation
The neural-network-based CA model was written in ARC/INFO GRID’s Arc

Macro Language (AML ). There are two advantages for programming within the
GIS. First, GIS data layers can be directly read by the neural network as data input
without any data conversion. Secondly, the powerful spatial analysis functions of
GIS, such as the Eucdistance and Focal functions of ARC/INFO GRID, can be
conveniently used in the programming.

The output layer has six neurons, each representing the conversion probability
from the existing type to a target type of land use. There are six types of land uses—
cropland, orchards, construction sites, built-up areas, forest and water. When a set
of site attributes is passed through the network, each output neuron produces a
conversion probability for a target type of land use. Land use conversion at a cell
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Figure 4. Training time and prediction error.

is decided by the competition between diVerent types of land uses. At each iteration,
a cell will be converted from one type to another type of land use that is associated
with the highest conversion probability. Land use remains unchanged if it is converted
to the same type of land use.

The simulation was executed by using the land use in 1988 as the initial grid. A
mask was used to con� ne the simulation within the study area. Land use changes
outside the study area were masked out. Figure 5 shows the results of simulating
multiple land uses in the period of 1988–2005 by using the neural-network-based
CA model. It � rst simulated the land uses in 1993. The goodness of � t was evaluated
by comparing the simulation results with the actual land uses that are obtained from
remote sensing. Table 3 shows the confusion matrix between the simulated and the
actual land uses in 1993 based on overlay analysis. The simulation is quite acceptable
with overall accuracy of 83%.

The next step was to simulate future land use patterns in 2005, assuming the
continuation of the current trend and dynamics of urban development. The same
parameter values were used for the network to simulate the future land use changes.
Table 4 shows the simulated land use changes by categories. It is found that the
future urban growth will lead to a large amount of agricultural land loss if the
current land use development process continues. According to the simulation, the
built-up areas will increase by 163% while the cropland will drop by 70% in 2005.
The prediction of future land use pattern provides useful information for land use
planning and management. Potential impacts of land use changes can be further
estimated by GIS analysis (Li 1998). Sustainable land development plans can be
formulated to mitigate the negative impacts (e.g. control the scale and extent of the
land development ) before they actually take place.
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5. Conclusion
This paper has demonstrated that neural networks can be conveniently integrated

with cellular automata for simulating multiple land use changes. The proposed
method can overcome some of the shortcomings of the currently used CA models
in simulating complex urban systems and multiple land use changes by signi� cantly
reducing the tedious work in de� ning parameter values, transition rules and model
structures. Training data from the GIS can be easily used to obtain parameter values
by calibrating the model. The model has the advantages of handling incomplete and
erroroneus input data. The prediction surface is distinctly non-linear which is much
superior to the linear surface of the popular regression models (Lloyd 1997). In
many geographical phenomena, spatial variables are usually correlated with each
other. Traditional methods, such as multicriteria evaluation (MCE) techniques, are
inadequate in providing correct weights for correlated variables. In the neural-
network-based CA model, spatial variables are not necessarily required to be
independent of each other.

It is extremely diYcult to calibrate CA models when there are multiple land uses.
Traditional calibration methods are not robust because they are mainly based on
trial and error approaches. These approaches involve the test of many possible
combinations of parameter values for seeking the best � t. They are very computation-
intensive because there are numerous possible combinations. The calibration
algorithms are also application-dependent . Neural networks are quite robust and
convenient in calibrating simulation models by using common back-propagation
algorithms. In this study, the training process of neural network automatically
determines the parameter values. These values are then imported to the model for
simulation of multiple land use changes. The method signi� cantly reduces the time
of calibration.

The model structure is very simple by using a three-layer network with multiple
output neurons to generate conversion probabilities. The model structure is generic
and widely applicable to many applications of land use simulation. The users do not
need to de� ne the parameter values, detailed transition rules and model structures
but just need to supply the training data. For other types of CA models, transition
rules and model structures are not unique because diVerent CA models usually adopt
diVerent transition rules and model structures.

The neural-network-based CA model is directly developed in a GIS environment
by using ARC/INFO GRID AML . The GIS provides both data and spatial analysis
functions for constructing the neural network. Real data are conveniently retrieved
from the GIS database for calibrating and testing the model. The GIS functions are
also used for the neural network calculations. The neural network has multiple
output neurons to generate conversion probabilities at each iteration. Land use
conversion is decided by comparing the conversion probabilities. The model is
carried out by iteratively looping the neural network for simulating multiple land
use changes. Site attributes are dynamically updated at the end of each iteration.
Complex global patterns can be generated from local interactions through the neural
network. The simulation results are not deterministic because a stochastic variable
is used and site attributes are dynamically updated at the end of each loop.

The model has been successfully applied to the simulation of a fast growing
region in southern China using a real data set from satellite images. The accuracy
of the simulation of 83% is quite acceptable. The simulation of future base-line
multiple land use development can help planners and policy makers to understand
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Figure 5. Simulation of multiple land use changes using the neural-network-based CA model.
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Table 4. Simulated land use changes by categories (in hectares).

1993
1988 2005

Land use (Initial) Actual Simulated (Future)

Cropland 100 400.3 77 839.3 84 229.6 57 047.0
Construction sites 2031.7 22 753.4 16 118.2 22 886.4
Orchard 63 512.6 62 458.9 59 608.8 70 281.0
Built-up areas 15 927.3 18 536.1 20 465.1 30 267.4
Forest 40 404.2 41 574.8 41 204.4 41 162.7
Water 17 392.5 16 506.1 18 042.5 18 024.2
Total 239 668.6 239 668.6 239 668.6 239 668.6

the environmental impacts and land use problems associated with the current trend
of urban development. Alternative plans and policies can be formulated and com-
pared with the simulated base-line growth to see what can be done to mitigate the
negative impacts and control the scale and extent of the predicted land development.

There are some limitations for the model. Although it can be calibrated using
empirical data, future changes in the transportation network cannot be easily
forecasted and incorporated in the simulation. The changes of infrastructures can be
regarded as exogenous factors rather than predicting these changes by the model
itself. The calibration also assumes that the relationship can be extracted from
empirical data. There is still a problem when the relationship is changing. More
temporal data may be needed for the neural network to capture the changing features.
These problems do not just apply to this neural-network-based model, but also to
other CA and urban simulation models as well. Moreover, like other neural network
models, it is essentially a black-box model. It does not provide explicit knowledge
about the process of land use conversion. Further research is also needed to study
the eVects of diVerent neural network structures on the simulation of land use changes.
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