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a b s t r a c t

Cellular automata (CA) have been increasingly used to simulate complex urban systems.

Empirical data can be used to calibrate CA models so that realistic urban patterns can be

generated. Traditionally, the calibration procedure employs linear regression methods, e.g.,

multicriteria evaluation. However, the evolution of urban systems often manifests the com-

plexity of non-linear features, for which the linear transition rules are insufficient. This

paper proposes to use the kernel-based learning techniques to acquire non-linear transi-

tion rules for CA. The kernel-based approach maps the original data vectors to an implicit

high-dimensional feature space, through which complex non-linear problems are translated

into simple linear problems. Compared with a widely used non-linear method, neural net-

work, the kernel method is more mathematically “transparent” and therefore the results are

easier to be analyzed. A case study of simulating the expansion of Guangzhou, a fast grow-

ing city in China, shows that the kernel-based CA even achieves a slightly higher accuracy

than a neural-network-based CA.

© 2007 Elsevier B.V. All rights reserved.

1. Introduction

Cellular automata (CA) were first proposed by Ulam in the
1940s and soon used by Von Neumann to investigate the log-
ical nature of self-reproducible systems (White and Engelen,
1993). CA adopt a bottom-up approach, through which local
individual behaviors can give rise to complex global patterns.
An increasing number of recent studies have used CA to sim-
ulate complex geographical phenomena, such as population
dynamics (Couclelis, 1988), wildfire spreading (Clarke et al.,
1994; Karafyllidis and Thanailakis, 1997; Hargrove et al., 2000),
epidemic propagation (Sirakoulis et al., 2000), forest dynam-
ics (Lett et al., 1999), landscape changes (Wang and Zhang,

� This paper proposes to use kernel-based learning techniques to acquire non-linear transition rules of cellular automata for urban
simulation.
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2001; Soares-Filho et al., 2002), urban growth (Batty and Xie,
1994; Couclelis, 1997; Clarke et al., 1997; Li and Yeh, 2000, 2002;
Wu, 2002), and land-use changes (White and Engelen, 1993;
Li and Yeh, 2002). Previous work shows that complex geo-
graphical phenomena can be effectively simulated using CA’s
simple local transition rules. This is in accordance with the
complexity theory that a complex system may result from the
interactions of simple subsystems (White and Engelen, 1993;
Clarke et al., 1994).

Among all the geographical applications of CA, urban
simulation may be the one that has been best explored
and has most case studies (White and Engelen, 1993;
Batty and Xie, 1994; Couclelis, 1997; Clarke and Gaydos,

0304-3800/$ – see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.ecolmodel.2007.08.024



Author's personal copy

170 e c o l o g i c a l m o d e l l i n g 2 1 1 ( 2 0 0 8 ) 169–181

1998; Wu and Webster, 1998; Li and Yeh, 2004). Couclelis’
(1985, 1997) early research shows that CA can be used
as an analogue or metaphor to study how a variety of
urban dynamics might arise; Batty and Xie (1994, 1997) car-
ried out some pioneering work that simulates land use
dynamics in the city of Buffalo, NY using CA and GIS;
White et al. (1997) developed a CA model to simulate the
land-use pattern of Cincinnati, Ohio; Clarke’s (1997) sim-
ulation of urbanization of the San Francisco Bay Area;
Li and Yeh (2000) were among the pioneers to integrate
CA and GIS, and used the integrated system to simu-
late the rapid urban expansion in the Pearl River Delta,
China.

Transition rules are essential in urban CA. These rules
are represented by the parameters and weights associated
with the spatial variables involved in the simulation. Usu-
ally, empirical data are used to derive and calibrate the
values of these parameters and weights. Various approaches
have been explored for the derivation and calibration. For
example, Clarke et al. (1997) generates simulated scenarios
using different combinations of parameter values, and then
determines the most optimal combination through visually
comparing the simulation results with the actual situation.
While this approach is simple, it is not necessarily efficient
and reliable when the possible combinations are numer-
ous due to a large set of variables. Wu (1998) propose a
more structured procedure based on the hierarchical anal-
ysis process (AHP) that defines the parameter values in a
heuristic way. Later, logistic regression model was devel-
oped to obtain transition rules (Soares-Filho et al., 2002; Wu,
2002). Both the AHP and the logistical regression methods
are inherently linear and consequently not good at dealing
with complex relationships among a large number of spa-
tial variables in urban land use dynamics. To overcome this
problem, neural-network CA model was developed to han-
dle the complex relationships and obtain parameter values
automatically (Li and Yeh, 2002; Aitkenhead et al., 2004).
Neural networks can significantly improve the CA’s perfor-
mance in urban simulation. However, they are difficult to
be mathematically analyzed and tend to have problems of
over-fitting. Exploration of other alternative non-linear meth-
ods for rule-generation in urban CA is then academically
interesting may result in useful practical applications as
well.

This study tests the performance of a kernel-based method
in defining non-linear transition rules for urban CA. This
method uses a kernel function to map data from the orig-
inal feature space to a higher dimensional space, through
which a non-linear problem is translated into a linear one
and is to be solved in a linear way (Cawley and Talbot, 2003;
Abdallah et al., 2004). Particularly for urban CA, the linear tran-
sition rules defined in the higher dimensional space can be
used to represent the non-linear relationships among vari-
ous spatial variables in the land use change. A kernel-based
method can also reduce the number of parameters used by
the classifier, since the parameters can be only about the
most relevant samples. In this study, we developed a kernel-
based CA model and applied it to the simulation of land
use change in Guangzhou, a fast developing city in Southern
China.

2. Retrieving transition rules of CA using
kernel-based methods

Kernel-based learning methods were recently developed in
the field of machine learning (Bousquet and Perez-Cruz, 2003),
and have been quickly applied to non-linear problems in many
applications (Cho et al., 2004). These methods are based on
the Structural Risk Minimization principles in the computa-
tional learning theories (Vapnik, 1998). Compared with some
widely used non-linear methods like neural network, they
are relatively easy to be mathematically analyzed, because
the classification is eventually a linear process in the high
dimensional feature space (Klaus-Robert et al., 2001). In addi-
tion, some previous work demonstrates that the kernel-based
methods are robust (Huang et al., 2004). Some representative
methods in this category include support vector machines
(SVM) (Scholkopf et al., 1997), kernel Fisher discriminant (KFD)
(Mika et al., 1999) and kernel principal component analysis
(Kernel PCA) (Scholkopf et al., 1998). Among these meth-
ods, KFD has been shown by many studies to have better
performance than the others (Mika et al., 1999; Liu et al.,
2004; Liang and Shi, 2004), and therefore was chosen in
this study to develop the non-linear CA for urban simula-
tion.

The traditional Fisher discriminant is linear and has proven
successful in linear classification problems. Specifically, it
seeks to find a linear transformation that maximizes the vari-
ances of between-class scatters and minimizes the variances
of within-class scatters (Zhang and Huang, 2005). The crite-
ria (called Fisher criteria) in this transformation are that the
ratio of the mean between classes and the sum of variance
in classes are maximized. Its basic process is to project d-
dimensional data of j classes to a certain direction, on which
the points of the same classes will be clustered together,
and the points of different classes will be separated as much
as possible. Fig. 1 shows a classification using the Fisher 2-
dimensional linear discriminant. The data points in this figure
are to be classified into two classes, Class 1 and Class 2. Their
projections on either X1 axis or X2 axis are overlapped to some
extent, and therefore they cannot be well classified directly
based on values for X1 or X2. The linear Fisher discriminant

Fig. 1 – Classification using linear Fisher discriminant.
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Fig. 2 – Mapping the input vectors into high dimensional feature space using kernel functions.

finds a beeline Y and projects all the data points onto it.
The criteria for defining Y include maximizing the distance
between the centers of the two clusters of the projected points
(represented by Y1 and Y2, respectively), and minimizing the
overlap of the two clusters. In this way, the perpendicular line
passing through the midpoint between Y1 and Y2 will well
classify the original data points.

For more complex classification problems, Mika et al. (1999)
and Baudat and Anouar (2000) propose non-linear kernel
Fisher discriminant (KFD). The KFD methods use certain ker-
nel functions to project input vectors to high dimensional
feature space, through which complex non-linear problems
can be translated into simple linear problems (Fig. 2).

Formally, dataset X contains N d-dimensional samples, i.e.,
X = {x1, x2,. . .,xN}, and these samples belong to two classes, w1

and w2; The w1 samples are denoted as X1 = {x1
1, x1

2, . . . , x1
N1

},
and the w2 samples are denoted as X2 = {x2

1, x2
2, . . . , x2

N2
}; Sam-

ples x ∈ Rd can be translated from the original feature space
to a high-dimensional feature space F through a non-linear
mapping function ˚, which can be represented as follows:

˚ : Rd → F, x → ˚(x) (1)

After the translation, the traditional linear Fisher discrim-
inant can be applied in the new feature space F. The Fisher
criterion in F is then defined by:

J(w) = wTS˚
b

w

wTS˚
ww

(w ∈ F) (2)

where w is the discriminant vector, S˚
b

and S˚
w are the corre-

sponding scatter matrices defined in F:

S˚
b = (m˚

1 − m˚
2 )(m˚

1 − m˚
2 )

T
(3)

S˚
w =

2∑
j=1

Nj∑
i=1

(˚(xj

i
) − m˚

j )(˚(xj

i
) − m˚

j )
T

(4)

where m˚
j

= 1
Nj

Nj∑
i=1

˚(xj

i
), j = 1, 2.

If the dimensions of F are very high, the linear Fisher dis-
criminant may not be directly solvable. Kernel functions are

introduced to overcome this difficulty. An attractive point of
kernel functions is that the scalar product can be implicitly
computed in the feature space, without explicitly using or
even knowing the between-space mapping (Klaus-Robert et
al., 2001; Scholkopf et al., 1999; Feng and Shi, 2004). Each (lin-
ear) algorithm that only uses scalar products can implicitly be
executed by using kernels, i.e., one can construct a non-linear
version of a linear algorithm. Commonly used kernel func-
tions include Polynomial kernel, K(x,y) = (xy + 1)d, and Radial
Basis Function kernel (RBF), K(x, y) = exp(−|x − y|2/�2).

The theory of reproducing kernels indicates that w can be
written as follows (Aronszajn, 1950):

w =
N∑

i=1

ai˚(xi) (5)

According to Eq. (5) and the definition of m˚
j

, wTm˚
j

can be
written as follows:

wTm˚
j = 1

Nj

N∑
i=1

Nj∑
k=1

aik(xi, x
j

k
) = aTPj (6)

where Pj = (Pjk)
k=1,2...N

, Pjk = 1/Nj

Nj∑
i=1

K(xk, x
j

i
), K(xk, x

j

i
) =

˚(xk)˚(xj

i
) is the kernel function. Now consider the numerator

of Eq. (2), using the definition of S˚
b

and Eq. (6) it can be
rewritten as:

wTS˚
b w = aTPa (7)

where P = (P1 − P2)(P1 − P2)T . Using Eq. (5), the definition of m˚
j

,
and a similar transformation as in Eq. (7), the denominator of
Eq. (2) can be written as (Mika et al., 1999):

wTS˚
ww = aTQa (8)

where Q =
2∑

j=1

Nj∑
i=1

(Kj

i
− Pj)(K

j

i
− Pj)

T
, K

j

i
= K(xk, x

j

i
), combining

Eqs. (7) and (8), Fisher’s linear discriminant in F is (Mika et
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al., 1999):

J(a) = aTPa

aTQa
(9)

Eq. (9) is the KFD function. When J(a) reaches its maximum
value, the eigenvector aopt becomes the optimal mapping
direction:

aopt = arg max(J(a)) = Q−1(P1 − P2) (10)

It is possible that Q in Eq. (10) returns a null value, resulting
in an inability to solve the equation. The following modifica-
tion can avoid this problem (Mika et al., 1999):

Q� = Q + �I (11)

where � is a positive constant and I is a unit matrix. The pro-
jection of a test sample x onto the discriminant is computed
by

G(x) =
N∑

i=1

aoptK(xi, x) (12)

The decision function can then be provided as follows:

F(x) = sign(G(x) − b0) (13)

where b = aopt(P1 + P2)/2. The decision rule can be represented
by:

F(x)

{
> 0

< 0
→ x ∈

{
w1(class)

w2(class)
(14)

In this study we use KFD to derive transition rules in CA
for simulating complex urban land use dynamics. The data
of those spatial variables used in the CA modeling are from
GIS and remote sensing. The general procedure of the kernel-
based CA is illustrated in Fig. 3.

Determining the development probability using the tran-
sition rules is the most critical issue in urban CA. This
probability, which is estimated based on a series of spatial
variables (Batty and Xie, 1994; Wu and Webster, 1998; Li and
Yeh, 2002), essentially represents the relationships between
urban development and those variables. In this study, KFD
is used to handle the highly complex relationships among
those variables. The conventional KFD only generates Boolean
boundaries, which are unsatisfactory for an application like
urban simulation that is characterized by considerable uncer-
tainty (Li and Yeh, 2004). Here we borrow a method developed
by Wu (2002) to “soften” the clear-cut boundary using a logis-
tic regression model. Many studies demonstrate that urban
development fits the logistic pattern (Herbert and Thamas,
1990; Liu and Stuart, 2003). After incorporating the KFD func-
tion into a logistic model, the transition rules of CA can be
written as follows:

Pdev(ij) = 1
a0 + b0 exp(−c0(G(xij) − b))

(15)

where a0, b0 and c0 are the parameters of the logistic model.
Corresponding to Eq. (12), G(xij) is the eigenvector value
obtained on the optimal mapping direction aopt for cell ij using
the KFD method:

G(xij) =
N∑

h=1

aoptK(xh, xij) (16)

Fig. 3 – Flowchart of mining non-linear transition rules of CA using kernel-based method for urban simulation.
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Fig. 4 – The kernel-based non-linear boundaries (transition
rules) in a two-dimension space.

where K(xh,xij) is a kernel function and xh is the training data.
The transition rules that were extracted by using this proposed
method are non-linear, as shown in Eqs. (15) and (16). Fig. 4
illustrates the kernel-based, non-linear boundaries (transition
rules) in a two-dimension space (defined by “distance to roads”
and “distance to national and provincial highways”), and the
output from the transition rules is the state of either “devel-
oped” or “non-developed”.

Eq. (15) only accounts for proximity (distance) variables, but
the development of a place is also influenced by its neighbor-
hood situations. Therefore, in this study, the neighborhood
influence is incorporated as an adjusting factor in the final
estimation of the development probability. Specifically, it is
assumed that the development probability increases when
there are more developed cells in the neighborhood, and this
neighborhood influence can be calculated as follows:

˝t−1(ij) =

∑
3×3

N(urban(ij))

3 × 3 − 1
(17)

where
∑
3×3

N(urban(ij)) is the total number of urbanized cells

in a 3 × 3 window around the cell under test.
Furthermore, one expects to see low development probabil-

ities in areas of rivers, steep slopes, and agricultural protection
zones. These constraints can also be incorporated into the
probability estimation (White et al., 1997; Li and Yeh, 2000).

The final development probability at time t is then esti-
mated through integrating the classification using the KFD
trained by empirical data, the incorporation of various con-
straints, and the inclusion of the neighborhood influence:

Pt(ij) = A ∗ Pdev(ij) ∗ con(suit(ij)) ∗ ˝t−1(ij) (18) Ta
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where A is a coefficient; con(suit(ij) is the total score of vari-
ous constraints and varies between 0 and 1; and ˝t−1(ij) is the
neighborhood influence at time t − 1.

In the CA simulation, when the development probability
of a cell is greater than a threshold, the state of the cell will
be converted to “developed”. The high uncertainty in urban
dynamics makes deterministically setting this threshold dif-
ficult. As a result, usually the threshold is decided in a Monte
Carlo way. Specifically, the development probability of a cell
is compared with a random number between 0 and 1 (Wu
and Webster, 1998). If the development probability at a cell
is greater than the random number, the state of the cell will
be converted to “developed”:

St(ij) =

⎧⎨
⎩

Developed, Pt(ij) > � and ˇ < 1/N

Non-developed, Pt(ij) > � and ˇ < 1/N

Non-developed, Pt(ij) ≤ �

(19)

where N is the number of iterations required for the simula-
tion, � and ˇ are random variables ranging from 0 to 1.

3. Model implementation and simulation
results

The kernel-based CA model was applied to the simulation of
urban development of a fast-growing city, Guangzhou, in the
Pearl River Delta of China. The actual urban areas in the years
of 1988, 1993 and 2002 were identified from the TM satellite
images. These empirical data were used to derive and calibrate
transition rules. A series of spatial variables that are related to
land development were prepared using GIS (Table 1 and Fig. 5).
The distance variables were calculated using the Eucdistance
function in ArcGIS. The number of developed cells in the 3 × 3
neighborhood was counted using the Focal function of ArcGIS.
The agriculture suitability is calculated using the raster calcu-

Fig. 5 – Various spatial variables prepared by a raster GIS.
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Table 2 – Classification accuracies by using different kernel functions

Kernel function Polynomial order (d) Accuracy for training samples (%) Accuracy for testing samples (%)

Polynomial
2 85.1 68.3
3 87.0 69.5
4 88.4 70.1

Radial basis parameter (�) Accuracy for training samples (%) Accuracy for testing samples (%)

Radial basis

0.5 100.0 58.4
5 100.0 63.7

10 99.1 67.2

lator function in ArcGIS. Land use data were acquired through
classification of Landsat TM images.

The land use image for each year derived from the TM
data was resampled to 50 m, which gives an image with
size 396 × 450. While the image preserves the spatial details
required for the analysis, its relatively high resolution may
result in significant spatial autocorrelation and introduce
considerable bias into the resulting rules. Moreover, directly
working on such an image would be an overwhelmingly inten-

sive computation process. Stratified random sampling on each
original image was carried out to alleviate these problems (Li
and Yeh, 2002). The final sample set contains data of 400 loca-
tions. These samples were divided into two equal groups, one
as the training data to derive the transition rules and the other
as the test data to verify the trained classifier.

The proposed model was implemented using Visual Basic
6.0, ArcObjects, and Matlab 7.1. ArcObjects provides access
to spatial data, as well as tools for distance calculation and

Fig. 6 – Simulation of urban dynamics of Guangzhou using kernel-based CA model.
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focal operations. Matlab 7.1 was used to calculate the tran-
sition rules. Visual Basic was used to integrate the different
components in the model.

Results of two different types of kernel functions: the poly-
nomial kernel and the radial basis function (RBF) kernel were
compared. Table 2 shows the comparison of these two func-
tions on classifying the 200 samples in the test set. It is found
that the RBF has a more serious over-fitting problem, which
is the main reason for its poorer accuracy in classifying the
test data. The table shows that the polynomial kernel is gen-
erally better than the RBF. According to the experiment, this
kernel method yields the best results when d = 4. Therefore,
d = 4 was used in the following estimation of the development
probability.

The simulation was conducted in discrete temporal steps.
A sufficient number of steps are required to reveal the effects
of spatial interactions and produce details in the resulting spa-
tial patterns. Although there is no consensus on the optimal
number of steps, 100–200 iterations are common in practice
(Wu, 2002; Li and Yeh, 2004). In this study, the urban develop-
ment in 1993 and 2002 was obtained by running 200 iterations
and 400 iterations respectively.

Fig. 6 shows that Guangzhou had an obvious urban expan-
sion from 1988 (T = 0) to 2002 (T = 400). This urbanization
process has altered the degree of fragmentation and structural
complexity of the urban landscape. To quantify the changes
in landscape structural complexity, we selected a set of met-
rics for measuring the entire landscape, including number of
patches (NP), the largest patch index (LPI), edge density (ED),
landscape shape index (LSI), and contagion (a measure of land-
scape configuration). These metrics were computed from the
rasterized land-use maps using the Fragstats software pack-
age (McGarigal and Marks, 1995). These spatial pattern metrics
capture ecologically relevant aspects of spatial pattern such as
fragmentation (NP, LPI, ED, and contagion), patch shape (LSI),

and amount of edges between contrasting patch types (ED and
contagion) (Jenerette and Wu, 2001).

In terms of the landscape structure, from 1988 (T = 0) to
2002 (T = 400) the number of patches and the edge density
increased, indicating an increase of fragmentation from 1988
to 2002 (Fig. 7A and C). Correspondingly, the largest patch
index decreased (Fig. 7B). Urbanization also increased the
complexity of patch shape (Fig. 7D). The contagion index
tended to decrease, following the same trend of ED, which also
indicates that fragmentation of landscape is increasing with
urbanization (Fig. 7E).

4. Model validation

The assumption is that this model can be used to forecast the
future land development if it is able to simulate the past trend
quite well. Therefore, the simulated patterns for years 1993
and 2002 are validated by comparing them with the actual
situations derived from the TM data. Following Clarke et al.
(1997), White et al. (1997) and Ward et al. (2000), we conducted
visual inspections and found that the simulated and actual
patterns are very similar (Fig. 8).

Besides the visual inspection, quantitative comparisons
were also performed to obtain more objective assessments.
First, the comparison was conducted by a cell-on-cell over-
lay of two images. This method evaluates the coincidence
of land use types at the exact locations between the simu-
lated and the actual patterns (Li and Yeh, 2002). Table 3 shows
the results of this comparison. The total accuracies are 79.0%
and 74.1% for 1993 and 2002, respectively. The kappa coef-
ficient, which better addresses the difference between the
actual agreement and chance agreement (Fung and LeDrew,
1988; Congalton, 1991), are 57.0% and 48.2% for 1993 and 2002,
respectively.

Fig. 7 – Landscape indices of simulated results by using kernel-based CA model.
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Fig. 8 – Simulated and actual development patterns of Guangzhou in 1988, 1993 and 2002.

Table 3 – Assessment of the goodness-of-fit for kernel-based CA model using the spatial overlay

1988–1993 (cells)

Simulated non-urban Simulated urban Goodness-of-fit (%)

Actual non-urban 83653 21653 79.4
Actual urban 15834 57060 78.3
Total accuracy 79.0
Kappa coefficient 57.0

1993–2002 (cells)
[0pt]

Simulated non-urban Simulated urban Goodness-of-fit (%)

Actual non-urban 64595 24359 72.6
Actual urban 21961 67285 75.4
Total accuracy 74.1
Kappa coefficient 48.2
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Table 4 – Landscape indices obtained for simulated patterns of kernel-based CA compared with actual patterns derived
from TM data

1988–1993

NP LPI ED LSI Contagion

Simulated 8526 47.49 80.63 43.83 15.92
Actual 8206 46.24 76.46 39.21 16.14
%Deviation 3.9 2.7 5.4 11.8 1.4

1993–2002
[0pt]

NP LPI ED LSI Contagion

Simulated 9001 38.26 81.17 42.59 14.58
Actual 8723 35.45 74.14 37.29 15.49
%Deviation 3.2 7.9 9.5 14.2 5.9

Table 5 – Assessment of the goodness-of-fit for neural networks-based CA model using the spatial overlay

1988–1993 (cells)

Simulated non-urban Simulated urban Goodness-of-fit (%)

Actual non-urban 82144 23162 78.0
Actual urban 17521 55373 76.0
Total accuracy 77.2
Kappa coefficient 55.3

1993–2002 (cells)
[0pt]

Simulated non-urban Simulated urban Goodness-of-fit (%)

Actual non-urban 63732 25222 71.6
Actual urban 24349 64897 72.7
Total accuracy 72.2
Kappa coefficient 44.4

However, the overlay method cannot provide informa-
tion about the morphology of the urban spatial structures,
such as connectivity, fractals, and compactness. Landscape
indices should be able to describe the characteristics of
spatial patterns and provide useful insights about urban
morphology. The validation is carried out by examin-
ing the differences between the simulated patterns and
the actual ones (classified from remote sensing) on the
landscape metrics (Table 4). The small differences on

these metrics indicate a good conformity between the
simulated and actual patterns in terms of landscape
structure.

To establish a benchmark for evaluation of the proposed
kernel-based CA model, we compared it with other CA mod-
els, the neural network and the logistic regression. The
neural network CA (Li and Yeh, 2002; Aitkenhead et al.,
2004) and the logistic-based CA (Soares-Filho et al., 2002;
Wu, 2002) were applied to the same Guangzhou dataset.

Table 6 – Assessment of the goodness-of-fit for logistic-based CA model using the spatial overlay

1988–1993 (cells)

Simulated non-urban Simulated urban Goodness-of-fit (%)

Actual non-urban 80325 24981 76.3
Actual urban 20834 52060 71.4
Total accuracy 74.3
Kappa coefficient 47.3

1993–2002 (cells)
[0pt]

Simulated non-urban Simulated urban Goodness-of-fit (%)

Actual non-urban 62472 26482 70.2
Actual urban 28098 61148 68.5
Total accuracy 69.4
Kappa coefficient 38.7
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Table 7 – Landscape indices obtained for simulated patterns of neural networks CA compared with actual patterns
derived from TM data

1993

NP LPI ED LSI Contagion

Simulated 8583 48.13 81.04 42.64 15.67
Actual 8206 46.24 76.46 39.21 16.14
%Deviation 4.6 4.1 5.9 8.7 2.9

2002
[0pt]

NP LPI ED LSI Contagion

Simulated 9128 38.72 81.59 41.51 14.39
Actual 8723 35.45 74.14 37.29 15.49
%Deviation 4.6 9.2 10.0 11.3 7.1

Table 8 – Landscape indices obtained for simulated patterns of logistic-based ca compared with actual patterns derived
from TM data

1993

NP LPI ED LSI Contagion

Simulated 8534 48.74 81.58 42.92 15.41
Actual 8206 46.24 76.46 39.21 16.14
%Deviation 4.0 5.4 6.7 9.5 4.5

2002
[0pt]

NP LPI ED LSI Contagion

Simulated 9037 39.05 82.78 42.19 14.12
Actual 8723 35.45 74.14 37.29 15.49
%Deviation 3.5 10.1 11.7 13.3 8.8

Tables 5 and 6 show the accuracy evaluation using the
cell-on-cell overlay for the neural network CA and the logistic-
based CA. A comparison of Tables 3, 5 and 6 reveals that
the proposed kernel-based CA model is slightly more accu-
rate than the neural-network and the logistic regression.
Tables 7 and 8 show the validation using landscape met-
rics for the neural-network CA and the logistic-based CA
respectively. A comparison of Tables 4, 7 and 8 indicates that
the kernel-based CA also performs better than the neural-
network CA and the logistic-based CA in terms of structural
conformity.

5. Conclusion

The simulation of urban systems using cellular automata
(CA) may involve a large set of spatial variables, as well as
their complex relationships. The traditional linear methods
are inherently insufficient for capturing complex relation-
ships in the simulation of complex urban dynamics. This
paper presents a new method to derive non-linear transi-
tion rules for CA simulation of urban land use change. The
method is based on the kernel Fisher discriminant (KFD),
which projects the input vectors to a high dimensional feature
space for reducing complex non-linear problems into simple
linear problems.

The proposed method has advantages in dealing with com-
plex relationships among a large number of spatial variables
in urban land use dynamics, which can reflect the complex-
ity of geographical phenomena much better than traditional
linear approaches. Unlike neural networks, KFD is relatively
easy to analyze mathematically, since it is based on simple
dot product calculation and its final classification process is
eventually linear. Based on the principles of structural risk
minimization (SRM), KFD minimizes the upper bound of the
expected generalization error, which leads to a global opti-
mization. Furthermore, KFD allow us to interpret learning
algorithms geometrically in the kernel space, thus combining
statistics and geometry in an effective way.

The model has been successfully applied to the simulation
of a fast growing region in southern China (accuracy = 79.0%).
The proposed model has been validated using spatial overlay
and landscape indices to evaluate the goodness-of-fit between
the simulated patterns and the actual ones. It is found that
there is a good conformity between the simulated and actual
land development. Moreover, this proposed model has some
improvement of the accuracy over the neural network method
and the logistic regression. The KFD CA itself is generic and
should be applicable to other regions, such as Europe, USA, or
other parts of Asia. The variables included in the simulation,
however, can be regional and should be considered by the user
when applying the model to other regions.
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