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Abstract

Errors and uncertainties are important issues in most geographical analyses and modelling

processes. Cellular automata (CA) have been increasingly used for modelling geographical

phenomena, such as the evolution of urban systems. Urban simulation frequently involves

the inputs of a large set of spatial variables from GIS. The errors of data source in GIS

can propagate through CA modelling processes. Moreover, CA models themselves also have

modeling uncertainties because they are just an approximation to reality. These uncertainties

have impacts on the outcome of urban simulation. Identification and evaluation of these

errors and uncertainties are crucial for understanding and implementing the simulation results

of urban CA modelling. It is found that some of the characteristics of errors and uncertainties

in urban CA are quite unique which are not present in traditional GIS models. The study can

help urban modelers and planners to understand more clearly the characteristics and implica-

tions of CA modelling.
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1. Introduction

Errors and uncertainties are important issues in the GIS literature. Compared to

traditional methods (e.g. manual overlay), GIS provides more powerful functions

and accurate information based on computer technology. However, GIS are not free
of errors and uncertainties because of human errors, technical limitations and the

complexity of nature. GIS databases are approximations to real geographical varia-

tions with very limited exceptions (Goodchild, Sun, & Yang, 1992). Understanding

of errors and uncertainties of GIS is important for successful applications of GIS

techniques. There are two main types of GIS errors: (a) data source errors that exist

in GIS databases; and (b) error propagation through the operation performed on the

data by using GIS functions.

There is a growing trend of using cellular automata (CA) to study geographical
phenomena. CA were originally developed in digital computing and have been

widely used for simulating complex systems in physics, chemistry and biology. Re-

cently, a number of urban CA have been proposed to model complex urban systems

with the integration of GIS (Batty & Xie, 1994). Urban CA have much simpler

forms, but produce more meaningful and useful results in simulating urban dynam-

ics than mathematical-based models. Temporal and spatial complexities of urban

development can be well simulated by appropriately defining transition rules in

CA models. The application of CA in urban modeling can give insights into a wide
variety of urban phenomena. CA are capable of providing important information for

understanding urban theories, such as the emergence and evolution of forms and

structures (Webster & Wu, 1999; Wu & Webster, 1998). They are also used as plan-

ning models for formulating development scenarios (Li & Yeh, 2000; Yeh & Li,

2001, 2002).

Although there are many studies on urban CA, however, the errors and uncertain-

ties of CA have not attracted much attention. Only a few studies have been carried

out by examining the �sensitivity� issues of CA (Benati, 1997). Huge volume of geo-
graphical data is usually used in urban CA simulation, especially in modelling real

cities. Spatial variables can be retrieved from GIS and imported to CA modeling

processes. Like other GIS models, urban CA also has problems of data errors and

model uncertainties. These errors will propagate in CA simulation and affect the sim-

ulation outcomes. This requires the evaluation of the influences of source errors and

error propagation on simulation results. This paper attempts to examine the influ-

ences of errors and uncertainties on urban CA simulation. This can help urban plan-

ners to be aware of these issues when CA are used for projecting and modeling future
development in urban planning.
2. Uncertainties in urban CA

Urban CA models are subject to errors and uncertainties when they are applied to

real cities. It is because urban CA models are quite different from Wolfram�s deter-
ministic CA models (Wolfram, 1984). Wolfram�s models have strict definitions and
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Fig. 1. Data errors, model uncertainties, and error propagation in cellular automata.
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use very limited data. This allows CA models to produce stable outputs. However,

urban CA models usually require the input of a large set of spatial data for realistic

simulation. The outcome of CA models will be affected by a series of errors and

uncertainties from data sources and model structures (Fig. 1). The structure of dy-

namic looping is quite different from the simple GIS operations (e.g. overlay) which
can derive strict mathematical equations to estimate error propagation in modeling

process.
2.1. Errors from data sources

When spatial data are used in urban CA, the simulation is affected by a variety of

data source errors, such as investigation errors, mapping errors, and digitization er-

rors in building GIS databases. The first step is to identify the types of errors from
data sources. Two major types of source errors can be identified: Positional errors

and attribute errors.
2.1.1. Positional errors

Positional errors in GIS can affect the accuracy of urban simulation. Such errors

can cause mistakes in estimating conversion probability which is related to proximity

variables. Positional accuracy has been widely discussed in many GIS studies (Good-

child, 1991; Veregin, 1999). The positional errors for points can be measured by the
discrepancy between the actual location and recorded location. The spatial error for

a set of points has been commonly represented by root mean squared error (RMSE),

which is computed as the square root of the mean of the squared errors.

The position errors for lines can be represented using some variant of the epsilon

band (Veregin, 1999). There is a certain probability of observing the �actual� line
within the band. The simplest one is to assume that the band and the distribution

are uniform. However, recent studies show that both the band and distribution

might be non-uniform (Caspary & Scheuring, 1993; Veregin, 1999).
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2.1.2. Attribute errors

Attribute errors in data source can affect urban simulation results when

these data are used as the inputs to CA. These errors convey that something is

wrong for labeling at each location. Conventional surveying maps have errors that

are associated with human errors (e.g. reading errors) and instrumental errors
(e.g. unstable conditions). For example, a site labeled as vegetables on a map

may turn out to be grass on the ground. A DEM derived from contours is also

susceptible to the errors of interpolation. These errors will contribute to the

uncertainty in determining the initial state and calculating the constraint of each

cell.

2.2. Transformation or operation errors

Besides data source errors, common GIS operations or transformations can also

bring about uncertainties to CA modeling. In preparing the inputs to CA models,

some standard GIS operations have to be carried out to generate additional informa-

tion that is not stored in GIS. GIS databases only contain basic data for storage effi-

ciency. User-specific information may be produced by standard GIS operations, e.g.

data conversion, map algebra, buffering and masking. For example, development

suitability may be an important variable in estimating development probability

(Wu & Webster, 1998). The calculation of development suitability involves the use
of a series of GIS operations. Various layers of spatial variables are overlaid in most

situations. These operations are subject to modelling uncertainties. The transforma-

tion of GIS data may include:

• vector–raster transformation;

• raster–raster transformation (e.g. resampling);

• overlay or buffer operations;

• other complex operations (e.g. classification).

There are two major types of GIS data formats––vector and raster. The conver-

sion between vector and raster format is a common task in GIS operations. Urban

CA models are usually implemented using raster format––cells. Therefore, the inputs

of GIS data to CA models should be prepared in raster format. Vector data have to

be converted into raster data before spatial data can be handled by most of urban

CA. It is apparent that the conversion of vector data into raster data will result in

a loss of spatial detail (Fig. 2).
Even for raster data, raster–raster transformation is required for two purposes––

registration of different layers of data and conversion of data from one spatial

resolution to another. Registration of different sources of raster data is an important

procedure of using geographical data. Geo-referencing of maps is usually done by

using affine transformation or polynominal transformation. The transformation will

resample data with the method of nearest neighbor, bilinear interpolation, or cubic

convolution. It is possible that new errors may be created because of the mistakes in

registration or resampling. Conversion of data by changing cell size can allow them



Fig. 2. Loss of spatial information using discrete cells.
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to be comparable. However, when raster data are converted from a higher spatial

resolution to a lower spatial resolution, there is a loss of information.

Transformation related to GIS overlay can be implemented by �cartographic
algebra� (Burrough, 1986). Sometimes, multicriteria evaluation (MCE) may be re-

quired when a number of spatial factors are involved in urban simulation (Wu &

Webster, 1998). These operations may generate new errors during the process of data

handling. GIS operations are in effect a computational model which is merely an

approximation to reality (Heuvelink, 1998). Model errors can be introduced in

GIS database when such operations are carried out.

Environmental factors or constraints are usually incorporated in urban CA. This

type of information is obtained by using ordinary GIS operations, such as overlay
analysis or transformation. For example, constrained CA models may be developed

to simulate planned development (Li & Yeh, 2000). The purpose is to prohibit

uncontrolled development using constraint information provided by a GIS. A series

of resource and environmental factors can be defined in GIS and imported to CA

models as the attribute of each cell. These factors may include topography, land

use types, proximity and agricultural productivity (Li & Yeh, 2000). Constraint

scores can be calculated by applying GIS linear or non-linear transformation func-

tions. However, there are uncertainties in defining the forms of transformation
functions.

Errors may also be created during proximity analysis or buffer analysis of GIS. In

urban simulation, a common procedure is to calculate urban development probabil-

ity. Urban development probability decides whether land development can take

place during the simulation process. The probability is estimated based on the attrac-

tiveness to urban development. It is more attractive to urban development if a site

has closer distance to major transport networks or facilities. Some distance variables

are used to represent the attractiveness (accessibility), including various distances to
roads, railways, town centres, hospitals and schools. These variables can be conve-

niently defined based on GIS buffer analysis with the use of corresponding point

and line layers. A major problem is that there may be positional errors in represent-

ing points and lines in GIS layers. These errors can originate from human errors (e.g.

mis-registration) or model errors (e.g. limitations of pixel size). These positional er-

rors can cause uncertainties in determining development probability for urban

simulation.
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Other operations on spatial data can also bring about uncertainties. An example

is that attribute errors may come from the classification of remote sensing data. Re-

mote sensing classification is mainly based on spectral characteristics. Sensors�
noises, atmospheric disturbance, and limitations of classification algorithms are all

liable to classification errors. For example, some pixels may be misclassified for their
land use types by employing classification techniques to remote sensing data. These

errors can be generally measured by comparing ground data with classification re-

sults. A confusion matrix is usually constructed to indicate the percentages of cor-

rectly or wrongly classified points.

The existence of mixed pixels also causes uncertainty for remote sensing classifi-

cations. It is well known that remote sensing and other raster data are subject to

the errors caused by spatial resolution limitations. Remote sensing images are made

up of pixels. Each pixel corresponds to a basic sampling unit which records ground
information. Conventional remote sensing classification usually assumes the follow-

ing conditions (Fisher & Pathirana, 1990):

• any one single pixel has exactly one land use type;

• different land use types should have distinct signatures in remote sensing imagery;

• the same land use type should maintain homogenous and stable spectral

properties.

In reality, these assumptions are not realistic partly because of the existence of

mixed pixels in remote sensing images. A mixed pixel indicates that there is more

than one type of land use occupying a single pixel. General methods may have errors

in classifying mixed pixels. There are uncertainties when these data are stored in GIS

and further used for urban simulation. For example, initial urban areas, which are

the key input to urban simulation, may have errors from classification of remote

sensing images. Classification errors significantly influence the simulation of urban

growth because the errors in initial urban areas can propagate through the simula-
tion process.

2.3. Model uncertainties in urban CA modelling

The error problems of CA models are further exacerbated by model uncertain-

ties. There are other types of errors which are not produced during the process of

data capture. These errors come from models themselves due to limited human

knowledge, complexity of nature and limitation of technology. In CA simulation,
not only do input errors but model errors propagate through the simulation pro-

cess. Like any computer models, CA models could disagree with reality even when

the inputs were completely error-free. CA models are only an approximation to

reality. Most of the existing CA models are just loosely defined and a unique

model does not exist. Various types of CA models have been proposed according

to individuals� perception and preference, and requirements of specific applications.

The simulation results are hard to repeat when different CA models are used for

the same data set.
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3. Evaluation of uncertainties in urban CA

The problem and characteristics of data source errors are well researched (Fisher,

1999; Heuvelink, 1998). The following sections mainly examine the characteristics of

error propagation and uncertainties in urban CA modeling.

3.1. Error propagation in urban CA modeling

The assessment of error propagation in urban CA modeling is important for

understanding the results of simulation. In urban simulation, initial conditions,

parameter values and stochastic factors play important roles in influencing the sim-

ulation results. Unexpected features may emerge during CA simulation because of

the interactions of various local actions. The simulation could become meaningless
to urban planners if the behavior of the automation were completely unstable and

unrepeatable. Fortunately, it is found that CA simulation is able to produce stable

results at the macroscopic level (Benati, 1997). The general shape of CA simulation

remains the same although the configuration may be changed. However, the behav-

iors of CA simulation are unpredictable to a certain extent at the microscopic level.

Error and uncertainty can propagate through the modeling process. The original

errors may be amplified or reduced in the modeling process. All the errors inherent in

individual GIS layers can contribute to the final errors of the output during the over-
lay of these layers. There are many studies to show how such errors propagate in GIS

manipulation, such as the common overlay operation (Veregin, 1994). Heuvelink,

Burrough, and Stein (1989) present detailed methods to derive error propagation

equations in GIS using Taylor series. The advantages of quantitative models are that

they are able to yield analytical expressions of error propagation and the computa-

tion is not intensive. Another method to analyze error propagation is Monte Carlo

simulation which has been widely used in many applications. The advantages include

easy implementation and generally applicability, but the disadvantage is the lack of
an analytical framework.

Error propagation in CA models is different from that of GIS overlay operations.

In GIS operations, mathematical expressions can be given to calculate the errors pre-

sented in simple overlay using the logical AND and OR operators. However, CA

models adopt relatively complicated configurations by using neighborhood and iter-

ations. Simulation is a dynamic process in which very complex features can arise

according to transition rules. The conversion of the state of a central cell is influ-

enced by the states of its neighborhood. It is almost impossible to develop strict
mathematical equations to represent the error propagation in dynamic process. It

can be seen from Fig. 1 that error propagation in CA models is quite complicated

because of using dynamic looping.

A convenient way to examine error propagation in urban simulation is to perturb

spatial variables and assess the error terms in the outcome of simulation. Sensitivity

analysis has been used to estimate the effects of error in a database on analytical out-

comes in general GIS analysis (Fisher, 1991; Lodwick, 1989). Monte Carlo simula-

tion is often used to perturb spatial data, and then the sensitized data are used to
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estimate the accuracy of outcomes. Fisher (1991) has presented two algorithms to

perturb categorically mapped data, as exemplified by soil map data, and to assess

the error propagation.

The Monte Carlo method seems to be most suitable for analyzing error propaga-

tion in CA simulation. Standard error propagation theory cannot be used in some
models which involve complicated operations (Heuvelink & Burrough, 1993). The

Monte Carlo method is a convenient way to study error propagation when mathe-

matical models are difficult to define. Although the Monte Carlo method is very

computationally intensive, increasingly this is less problematic because of the

advancement of computer technology. When the Monte Carlo method is used, per-

turbations will be inserted in spatial variables so that the sensitivities of the pertur-

bations in urban simulation can be examined.

The simplest realization of noise is to use the uncontrolled perturbation when de-
tailed knowledge about the errors is unavailable. The perturbation can be carried out

to simulate attribute errors for the following spatial data: (a) land use types; (b) ini-

tial urban areas; and (c) suitability analysis.

The following experiment is to evaluate the effects of attribute errors on the sim-

ulation results. The initial images have two major types of land use––urban areas

and non-urban areas. It is expected that the initial image may be subject to classifi-

cation errors for these two land use types. There is only some general information

about the classification errors in most situations. The accuracy of land use classifica-
tion from satellite remote sensing usually falls within the range of 80–90% (Li & Yeh,

1998). However, the detailed locations of classification errors are not available in

most situations.

The first step of the experiment was to perturb the classified satellite images with

some errors. The size of the perturbation was based on the above expert knowledge

about the classification error of remote sensing. Twenty percent of errors were used

for the random perturbation of the classified remote sensing images. A very simple

constrained urban CA was used to examine error propagation. The use of too com-
plicated CA will mix the source error with model uncertainties. The model is based

the following rule-based structure (Batty, 1997):

IF any cell {x ± l, y ± l} is already developed

THEN Nfx; yg ¼
P

ij2XDfi; jg (D{i, j} = 1 for a developed cell,

Otherwise D{i, j} = 0)

&

IF N{x,y} > T1 and R > T2

THEN The cell {x,y} is developed

where N{x,y} is the total number of the developed cell in the neighborhood,

T1 and T2 are the threshold values, R is a random variable, and cell {i, j}

are all the cells which from the Moore neighborhood X including the cell {x,y}

itself.

A more sophisticated model is to use the development probability rather than

the simple total amount of already developed cell (N{x,y}) to decide land use
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conversion. The development probability is usually compared with a random vari-

able to decide if the conversion will take place. Development probability is calculated

by the combination of a series of spatial variables, including the number of already

developed cells in the neighborhood, distances to urban centres, and distances to

roads, etc. However, the definition of the parameter values for these variables is
not an easy job. To avoid this uncertainty, our experiments are based on the above

simple rule-based structure.

The experiment, which examines error propagation during urban simulation, was

carried out in Dongguan in the Pearl River Delta. It simulated the land development

in 1988–1993 when rapid urban expansion took place in the region. In this study, the

parameter l for the neighborhood size was set to 3. The threshold values of T1 and T2

determine how many cells can be converted into urban areas at each time step (iter-

ation). Lower values of T1 and T2 allow a larger number of cells to be developed. The
value of T2 falls within the range [0, 1]. It controls the size of perturbation for the

random variable. A larger size of perturbation will be introduced when a larger value

of T2 is used.

If the objective is to use the same amount of land consumption, lower values of T1

and T2 will require fewer time steps to finish the simulation. Therefore, the values of

T1 and T2 can be defined according to the amount of land consumption and the time

steps to complete the simulation.

The first experiment was to examine the influences of source errors on simulation
outcomes. The values of T1 and T2 were set to 10 and 0.90 respectively. The model

was used to simulate 23,330.5 ha of land development in Dongguan in 1988–1993.

The land area of Dongguan is 2465 km2. The model used a grid of 709·891 cells

with a resolution of 50 m2 on the ground for the simulation. The model run two

times––one with the input of original initial urban areas, and the other with the input

perturbed by 20% errors. The baseline test was to simulate urban growth using the

initial urban areas without error perturbation. The simulation was compared with

that of 20% errors perturbed to the initial urban areas. The errors were computed
by comparing the simulated results with the actual land development obtained from

remote sensing.

Fig. 3 shows some characteristics of error propagation in the simulation process.

It is found that the simulation without error perturbation also had errors in the sim-

ulation results. It is expected that the higher simulation errors are obtained when the

initial urban areas are perturbed with 20% errors at the original land use types. How-

ever, the error difference in the outcome is much less than the expected increased

error (20%). Fig. 3 shows that 35% error (t = 10) is produced in the result when
20% error is inserted, compared to 30% (t = 10) when no error is inserted. Therefore,

20% error perturbed only increases 5% error at the result instead of 20%. The con-

clusion is that the 20% error will not totally pass through the model and source error

is significantly depressed in the outcome. It is because the neighborhood functions of

CA can reduce the size of error propagation. These neighborhood functions usually

sum up the states in the neighborhood and the averaging effects will be introduced in

the simulation. The analysis also indicates that all the errors are reduced as the time

steps increase in simulation. This is because land available for development becomes
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less as the urban areas grow in size. The simulation is then subject to more con-

straints which minimize the chance of producing errors.

3.2. Uncertainties within CA models

A series of inherent model errors and uncertainties can be identified for CA mod-
els. They are related to the following aspects:

• transition rules;

• neighborhood configuration;

• simulation time;

• stochastic variables.

3.2.1. Transition rules

Transition rules are used to represent a process to be modeled. However, the def-

inition of transition rules is affected by researchers� understanding of the nature.

There are many ways to define transition rules in CA models. Different model forms

will have impacts on the outcome of CA simulation. A variety of urban CA models

has been proposed to tackle specific problems in urban simulation. Model variations

are usually dependent on individual preferences and specifications of applications. It

is essential to define transition rules while there is no unique way to do so. Substan-
tially different methods have been proposed in defining transition rules. They

include:

• the use of five controlling factors (Diffusion, Breed, Spread, Slope, and Road fac-

tors) (Clarke, Gaydos, & Hoppen, 1997);
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• estimating development probability based on the analytical hierarchy process

(AHP) of multicriteria evaluation (Wu & Webster, 1998);

• defining transition rules with fuzzy sets (Wu, 1999);

• calculating transition potentials using a predefined parameter matrix (White &

Engelen, 1993);
• simulating urban conversion using �grey-values� (Li & Yeh, 2000);

• incorporating planning objectives in urban simulation (Yeh & Li, 2001);

• simulating urban development with neural networks (Li & Yeh, 2002a);

• automatically discovering transition rules through data mining (Li & Yeh, in

press).

Development probability is usually defined as a function of a series of spatial vari-

ables. These spatial variables can be measured using GIS tools. There are no agree-
ments on how to choose spatial variables for urban simulation. When a series of

variables are present, it is not easy to judge which variable is valid for estimating

development probability. The selection of variables is a matter of experience. These

spatial variables may be correlated and the use of more or less number of variables

will affect the outcome of CA simulation (Li & Yeh, 2002b).

Moreover, the ways to measure and standardize these variables will also affect

simulation results. GIS are often used to obtain proximity variables, which reflect

the influences of sources (centres) on urban growth. For example, a closer distance
to a utility (market centre) will have a higher score of attractiveness for urban devel-

opment. The attractiveness of a centre will decrease as the distance increases. It is

straightforward to use the Euclidean distance to indicate the influences of centres.

However, a transformed form (e.g. a negative exponential index) may be more

appropriate to represent the actual influences of centres. It can more appropriately

represent the situation that the influences from centres do not decrease in a linear

form as distance increases. A problem with the negative exponential function is that

there are uncertainties in defining parameter values.
CA model errors are also introduced by mistakes in assigning parameter values.

There are problems on how to determine parameter values. CA models need to

use many spatial variables and thus many parameters. For example, White, Engelen,

and Uijee (1997) present a CA model to simulate urban dynamics. Their models need

to determine as many as 21 · 18 = 378 parameter values. Parameter values should be

defined before CA models are executed. They have critical influences on the outcome

of CA simulation (Wu, 2000). It is quite tedious to define proper parameter values

when the number of variables is large. A very simple method to find suitable param-
eter values is to use the so-called visual test (Clarke et al., 1997). It is based on the

trial and error approach in which the impact of each parameter is assessed by chang-

ing its value and holding other parameters constant. Wu and Webster (1998) provide

another method that uses analytical hierarchy process (AHP) of multicriteria evalu-

ation (MCE) techniques to determine parameter values. The pairwise comparison

was used to recover weight vector by which land suitability can be computed. How-

ever, the comparison will become very difficult when there is a large set of variables.

Moreover, the weights cannot be properly given when variables are correlated.
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The above methods have uncertainties because parameter values are decided with

subjective influences. Consistent methods should be developed to remove the uncer-

tainties. There is some work on finding optimal parameter values using exhaustive

computer search. Clarke and Gaydos (1998) develop a method to find suitable

parameter values based on computer search algorithms. It tests various trials of
parameter combinations and calculates the difference between the actual data and

simulated results for each trial. The parameter values can be found according to

the best fit of the trials. The computation is extremely intensive as the possible com-

binations are numerous. It usually needs a high-end workstation to run hundreds of

hours before finding the best fit. It is practically impossible to try all the possible

combinations. Computation time will even increase exponentially when there are a

larger number of parameters. An alternative to determine parameter values of CA

is to train neural networks by using the observation data of remote sensing (Li &
Yeh, 2002a). This can significantly reduce the uncertainties in defining the parameter

values of CA.

3.2.2. Neighborhood configuration

Neighborhood configuration is a problem of implementing the transition rules

into computation models. Transition rules are expected to be independent of the

models themselves as much as possible. For example, the distance of influences

should not be affected by the resolution of cells. However, uncertainties will arise
when computation models are used to implement transition rules. One of these prob-

lems is how to configure neighborhood. Cells, which are in the form of discrete

space, are the basic unit of CA models. Discrete cells are only the approximation

to the continuous space with loss of spatial detail (Fig. 2). There are questions on

how to choose proper cell size and cell shape. A large cell size can reduce data vol-

ume, but it may lead to the decrease of spatial accuracy. Uniform cells are commonly

used because they are simple for calculation. However, irregular cells may be more

suitable under particular circumstances (O�Sullivan, 2001). An example is to use
irregular cells to represent land parcels or planning units.

It can be calculated by summing or averaging the attribute values of cells within a

neighborhood. A simple example is to estimate the conversion probability based on

the summation of the total number of a state (e.g. development cells) in a 3·3 win-

dow. It is easy to know that the original data errors will be reduced if a large size of

neighborhood is used. However, the use of a larger window will also be accompanied

by the reduction of spatial detail because of the averaging effects.

The shape of neighborhood can affect the results of CA simulation. There are two
common types of neighborhoods––von Neumann neighborhood and the Moore

neighborhood. A way to examine neighborhood effects is to see how cities grow un-

der different neighborhood influences. The Moore neighborhood will lead to expo-

nential urban growth which is different from actual growth patterns. The von

Neumann neighborhood can be used to reduce the growth rate. However, the two

neighborhoods are generally in a rectangle form which has side effects in urban sim-

ulation. Instead, a circular neighborhood has better performance than rectangle ones

because it treats all directions equally (Li & Yeh, 2000).
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3.2.3. Simulation time

CA models adopt discrete time steps for the simulation of urban growth. The dis-

crete time is different from the actual continuous time. There are problems on how to

decide the interval of discrete time or the total number of iterations (time steps). The

larger the interval of the discrete time is, the smaller the number of time steps be-
comes. The discrete simulation time of CA is different from continuous real time.

For the same amount of land development, different time steps can be used to imple-

ment the simulation by properly defining the parameter values. However, the simu-

lation using 100 time steps are not the same as that using 10 time steps for non-linear

models.

There is a need to assess the influences of discrete time steps on CA simulation.

Temporal errors can be introduced in CA because of using approximate discrete time

steps. There is an issue on how to recalculate the parameter values when the time
steps are changed. If the development probability is used, the standard practice

for changing the transition probabilities related to time steps is as follows: if the

old time step is ts and the new one is Ts (Ts = n · ts), then the matrix of transition

probabilities kPk should be substituted by kPkn. Since this study is based on the

use of a threshold (T1) to decide land use conversion, the threshold should be chan-

ged to allow the same amount of land consumption for the simulation. This thresh-

old can be easily found out through a couple of trials.

An experiment with the same data set of our previous studies (Yeh & Li, 2001)
and the same amount of land development for 1988–1993 was carried out to examine

the influences of using different time steps (Fig. 4). Fig. 4a uses only 10 time steps to

generate the simulation result. It is much different from the actual urban form ob-

tained from remote sensing in Fig. 4d. It is because local interactions are important

for generating realistic urban forms. Too few time steps cannot allow spatial details

to emerge during the simulation process. An increase in the number of time steps can

help to generate more accurate simulation results (Fig. 4b and c). This characteristic

is different from that of linear models which do not depend on the choice of the time
steps.

3.2.4. Stochastic variables

Most urban CA are not deterministic in simulating complex urban systems.

Deterministic models may have problems in representing many geographical phe-

nomena. These phenomena have manifested some unpredictable features which can-

not be explained by independent variables because of the complexity of nature. It is

almost impossible to forecast exact future patterns by using any kind of computer
models. Frequently, urban CA models have to incorporate stochastic variables to

represent the uncertainty of nature. Some �noises� are artificially added to urban

CA models by using controlled stochastic variables to produce �realistic� simulation

(White & Engelen, 1993). In the transition rules, calculated development probability

is compared with a random number to decide whether the transition is successful or

not (Wu & Webster, 1998). This can allow a certain degree of randomness to be in-

serted in urban simulation. However, there are questions when these models are used

for urban planning. It is because each simulation will generate different results



Fig. 4. The influences of discrete time steps on simulation accuracies: (a) simulation from 10 time steps

(iterations); (b) simulation from 50 time steps (iterations); (c) simulation from 100 time steps (iterations);

(d) actual development.
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although the inputs are the same. A planner may be in a dilemma as to which result

is suitable for the planning. There is a concern on the repeatability of urban simula-

tion when CA are used for urban planning. The repeatability is crucial if CA are used

for preparing development plans.

Two experiments were undertaken to examine the uncertainty of stochastic CA.

First, a very simple experiment is to run the CA model twice repeatedly and examine

the overlapping percentage of the two simulations. In the overlay analysis, the urban

areas are coded with 1, and non-urban areas are coded with 0. If CA are determin-
istic, the urban areas and non-urban areas in the two different simulations should be

the same. They should be 100% overlapping in the overlay. The overlay will only

yield two values––2 for urban areas and 0 for non-urban areas. However, the sto-

chastic CA will not generate the same simulation results. The two simulations will

not completely overlap in the overlay, yielding three values in the hit count. The

hit count of 2 corresponds to urban areas while the value of 0 corresponds to

non-urban areas. However, the hit count of 1 just represents the areas of uncertainty.

It is urban in one simulation, and becomes non-urban areas in another simulation.
The areas with uncertainty in the simulations should be within a small percentage

of the total simulated urban area. Otherwise, the simulations are meaningless. It is

interesting to see that the uncertainties mainly exist at the fringe areas of each urban
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cluster, and consistent simulation results are found in the large part of urban clus-

ters. This means that stochastic CA can maintain stability at the macro-level while

they may have subtle changes at the micro-level for each simulation. This character-

istic is useful for urban planners to understand the implications of CA urban

simulation.
A further experiment is to repeat the simulations 10 times and examine the over-

lapping of the simulations (Fig. 5). The hit count of 10 corresponds to the urban

areas that exist in all 10 repeated simulations. It is also clear that the major uncer-

tainties only exist in the fringe areas of urban clusters. In Fig. 5, the cells with hit

count from 1 to 10 are the simulated urban areas with different probability. The cells

with a larger value of hit count (e.g. 10) have higher confidence to be urban areas in

the simulation.

Fig. 6 further shows the cumulative percentage of overlapping among different hit
counts. Different threshold values for the random variable (R) were used in the tran-

sition rules to examine the effects of the size of perturbation on the simulation re-

sults. The cells with low values of hit count only amount to small percentage of

the total simulated urban areas. The cells with hit counts greater than 7 (70% of hits)

can amount to as high as 71.8% of the total simulated urban area (Fig. 6). This

means that 71.8% of the total simulated urban area can be repeated with a chance

of 70% when the CA model runs gain. The simulation results also indicate that

the use of a higher threshold value of random variable (R) in the stochastic simula-
tion will result in more uncertainties––lower percentages for higher hit counts.
Fig. 5. Overlay of the simulation results by repeatedly running the stochastic CA 10 times.



1
(10%)

2
(20%)

3
(30%)

4
(40%)

5
(50%)

6
(60%)

7
(70%)

8
(80%)

9
(90%)

10
(100%)

Counts
(% of Hits)

Threshold of Random Variable ( )T2

C
um

ul
at

iv
e

P
er

ce
nt

ag
e

of
O

ve
rla

pp
in

g
(%

)
0.6
0.7
0.8
0.9

0

20

40

60

80

100

Fig. 6. Cumulative percentages of overlapping areas for 10 repeated simulations using stochastic CA with

different sizes of perturbation.

A. Gar-On Yeh, X. Li / Comput., Environ. and Urban Systems 30 (2006) 10–28 25
The above experiments provide useful implications for the implementation of
planning CA models. If a planner would like to use urban CA simulation to prepare

development plans, the model should run a number of times to obtain the probabil-

ity of simulated urban areas. This can allow them to identify the potential develop-

ment sites with a high confidence, i.e. only selecting the sites with high hit counts

greater than 70%. This method should be useful for producing more reliable simula-

tion results for urban planning.
4. Conclusion

Like many GIS models, urban CA have inherent problems related to data errors

and model uncertainties. The issues of data errors and model uncertainties have been

well addressed in GIS literature. Although there are many studies on data errors and

error propagation in GIS analysis, very few researches have been carried out to

examine these issues in urban CA simulation. In this study, experiments have been

carried out to examine the influences of errors and uncertainties on urban CA sim-
ulation so that it can be better used for projecting and modeling future development

in urban planning.

GIS data provide the main inputs to most urban CA models in urban simulation.

A large amount of GIS data is usually required for producing realistic urban simu-

lation. It is well known that most GIS data are subject to a series of errors. There are

many possibilities of creating errors in spatial data as the errors can come from
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source maps and even be created during data digitizing. New errors can also be gen-

erated in GIS operations. All these errors will propagate in CA simulation and affect

the simulation results. There is concern whether urban CA models can produce

meaningful results, especially when they are applied to urban planning. Although

some researchers may be aware that errors can propagate through CA simulation,
they rarely pay much attention to this problem in practice because of its complexity.

When GIS data are used as key inputs to CA models, the source errors will propa-

gate and affect the outcomes of simulation. A particular example is the errors in

labeling land use types during land use classification. The study shows that errors

in the data source can propagate through CA simulation. However, the errors are

much reduced in the simulation because of the averaging effects of neighborhood

functions and the use of iterations in CA. The error reduction is also caused by

the constraints of decreasing land available for development as urban areas grow
in size.

Simulation uncertainty is further increased by model uncertainty. The relation-

ship between errors and outcomes is complicated for dynamic models. CA have a

series of inherent model uncertainties, which are related to a number of factors in

defining CA models––the neighborhood, cell size, computation time, transition rules,

and model parameters. Most CA models have incorporated stochastic variables in

urban simulation. This has allowed some unpredictable features to be inserted in

the simulation process. There are arguments that uncertainty is necessary for gener-
ating realistic urban features, such as the emergence of new urban centres during the

simulation process. A simple overlay of two repeated simulations from stochastic CA

can reveal the discrepancy between them. Fortunately, the discrepancy only exists in

the fringe areas of urban clusters according to the experiments. This means that sto-

chastic CA can generate relatively stable simulation results at the macro-level

although there are variations at the micro-level. This characteristic is important in

the application of stochastic CA models in simulating planning scenarios. Uncertain-

ties are mainly located at the urban fringe but there are relative certainties in areas
close to existing urban areas. Planners should run urban CA a number of times

repeatedly to obtain probability maps so that potential development sites can be

identified. The probability of simulated development can be obtained by overlaying

these repeated simulations. Planners can then select the simulated development sites

of high probability (confidence).

The issues of data errors, error propagation and model uncertainties are impor-

tant but often neglected in urban CA models. This paper has examined and ad-

dressed some of these issues by carrying out experiments using GIS data. Many
model errors are related to model configurations, i.e. how to define a proper model

to reflect the real process of urban development. This study demonstrates that some

of them, however, are quite unique to CA: (1) data source errors will be reduced dur-

ing simulation because of the averaging effects of neighborhood functions; (2) simu-

lation errors will decrease with time because the land available for urban

development is reduced in constrained urban CA as the urban areas grow in size;

(3) enough time steps (iterations) are required to ensure that spatial details can be

simulated from CA; and (4) the major uncertainties of simulation are mainly found
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at the edge of simulated urban areas. These characteristics are quite different from

those of general GIS modeling. The study shows that the errors and uncertainties

are less severe than what is normally expected from a CA model. The uncertainties

of the simulation will be reduced as the simulation continues with time. Moreover,

the uncertainties are mainly located at the urban fringe.
The findings of the study can help urban modelers and planners to understand

more clearly the characteristics of errors and uncertainties in urban simulation. This

is important for preventing the misinterpretation of the modeling results. Further

work is needed to develop a methodology for reducing the influences of errors so

that more reliable simulation results can be achieved to provide efficient planning

tools.
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